如图,?ABCD的顶点A、B的坐标分别是A(-1,0),B(0,-2),顶点C、D在双曲线y=kx上,边AD交y轴于点E,且四边形BCDE的面积是△ABE面积的5倍,则k=______.-数学
题文
如图,?ABCD的顶点A、B的坐标分别是A(-1,0),B(0,-2),顶点C、D在双曲线y=
|
答案
如图,过C、D两点作x轴的垂线,垂足为F、G,DG交BC于M点,过C点作CH⊥DG,垂足为H, ∵ABCD是平行四边形, ∴∠ABC=∠ADC, ∵BO∥DG, ∴∠OBC=∠GDE, ∴∠HDC=∠ABO, ∴△CDH≌△ABO(AAS), ∴CH=AO=1,DH=OB=2,设C(m+1,n),D(m,n+2), 则(m+1)n=m(n+2)=k, 解得n=2m,则D的坐标是(m,2m+2), 设直线AD解析式为y=ax+b,将A、D两点坐标代入得
由①得:a=b,代入②得:mb+b=2m+2, 即b(m+1)=2(m+1),解得b=2, 则
∴y=2x+2,E(0,2),BE=4, ∴S△ABE=
∵S四边形BCDE=5S△ABE=5×
∵S四边形BCDE=S△ABE+S四边形BEDM=10, 即2+4×m=10, 解得m=2, ∴n=2m=4, ∴k=(m+1)n=3×4=12. 故答案为:12. |
据专家权威分析,试题“如图,?ABCD的顶点A、B的坐标分别是A(-1,0),B(0,-2),顶点C、..”主要考查你对 求反比例函数的解析式及反比例函数的应用 等考点的理解。关于这些考点的“档案”如下:
求反比例函数的解析式及反比例函数的应用
考点名称:求反比例函数的解析式及反比例函数的应用
反比例函数解析式的确定方法:
由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。反比例函数的应用:
建立函数模型,解决实际问题。- 用待定系数法求反比例函数关系式的一般步骤是:
①设所求的反比例函数为:y= (k≠0);
②根据已知条件(自变量与函数的对应值)列出含k的方程;
③由代人法解待定系数k的值;
④把k值代人函数关系式y= 中。
反比例函数应用一般步骤:
①审题;
②求出反比例函数的关系式;
③求出问题的答案,作答。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:如图1,在平面直角坐标系中,点A、C分别在x轴、y轴上,四边形OABC是面积为4的正方形,函数y=kx(x>0)的图象经过点B.(1)k=______;(2)如图2,将正方形OABC分别沿直线AB、BC翻折-数学
下一篇:如图,直线经过A(1,0),B(0,1)两点,点P是双曲线y=12x(x>0)上任意一点,PM⊥x轴,PN⊥y轴,垂足分别为M,N.PM与直线AB交于点E,PN的延长线与直线AB交于点F.(1)求证:AF?BE=1;-数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |