用正方形的地砖不重叠、无缝隙地铺满一块地,选用边长为x(cm)规格的地砖,恰用n块;若选用边长为y(cm)规格的地砖,则要比前一种刚好多用124块.已知x、y、n都是正整数,且(x,-数学

题文

用正方形的地砖不重叠、无缝隙地铺满一块地,选用边长为x(cm)规格的地砖,恰用n块;若选用边长为y(cm)规格的地砖,则要比前一种刚好多用124块.已知x、y、n都是正整数,且(x,y)=1.试问:这块地有多少平方米?
题型:解答题  难度:中档

答案

设这块地的面积为S,则S=nx2=(n+124)y2,得n(x2-y2)=124y2
∵x>y,(x,y)=1,
∴(x2-y2,y2)=l,得(x2-y2)|124.
∵124=22×31,x2-y2=(x十y)(x-y),x十y>x-y,且x十y与x-y奇偶性相同,

x+y=31
x-y=1

x+y=2×31
x-y=2

解之得x=16,y=15,此时n=900.
故这块地的面积为S=nx2=900×162=230400(cm2)=23.04(m2).
故答案为:23.04m2

据专家权威分析,试题“用正方形的地砖不重叠、无缝隙地铺满一块地,选用边长为x(cm)规格..”主要考查你对  有理数定义及分类  等考点的理解。关于这些考点的“档案”如下:

有理数定义及分类

考点名称:有理数定义及分类

  • 有理数的定义:
    有理数是整数和分数的统称,一切有理数都可以化成分数的形式。

  • 有理数的分类:
    (1)按有理数的定义:
                                  正整数 
                     整数{     零 
                                  负整数
    有理数{     
                                正分数 
                    分数{
                                负分数
     

    (2)按有理数的性质分类: 
                               正整数  
                   正数{ 
                               正分数
    有理数{  零
                               负整数 
                   负数{
                               负分数

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐