已知:关于x的两个方程x2+(m+1)x+m-5=0…①与mx2+(n-1)x+m-4=0…②方程①有两个不相等的负实数根,方程②有两个实数根.(1)求证方程②的两根符号相同;(2)设方程②的两根分别为α、β,若-数学
题文
已知:关于x的两个方程x2+(m+1)x+m-5=0…①与mx2+(n-1)x+m-4=0…②方程①有两个不相等的负实数根,方程②有两个实数根. (1)求证方程②的两根符号相同; (2)设方程②的两根分别为α、β,若α:β=1:3,且n为整数,求m的最小整数值. |
答案
(1)∵x2+(m+1)x+m-5=0, ∴△>0,即△=(m+2)2-4(m-5)=m2+2m+1-4m+20>0,
由②得m>-1由③得m>5, ∴m>5, ∴
∴方程②有两个同号实数根; (2)∵α、β分别为方程mx2+(n-1)x+m-4=0的两个根,且α:β=1:3, ∴α+β=4α=
∴α?β=
∴
(n-1)2=
∴m≥4, ∵△=(n-1)2-4m(m-4)≥0,3α2=
∵
∴m的最小整数值为6. |
据专家权威分析,试题“已知:关于x的两个方程x2+(m+1)x+m-5=0…①与mx2+(n-1)x+m-4=0…②方程..”主要考查你对 一元二次方程根与系数的关系 等考点的理解。关于这些考点的“档案”如下:
一元二次方程根与系数的关系
考点名称:一元二次方程根与系数的关系
- 一元二次方程根与系数的关系:
如果方程 的两个实数根是那么,。
也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。 一元二次方程根与系数关系的推论:
1.如果方程x2+px+q=0的两个根是x1、x2,那么x1+x2=-p , x1`x2=q
2.以两个数x1、x2为根的一元二次方程(二次项系数为1)是x2-(x1+x2)x+x1x2=0
提示:
①运用根与系数的关系和运用根的判别式一样,都必须先把方程化为一般形式,以便正确确定a、b、c的值。
②有推论1可知,对于二次项系数为1的一元二次方程,他的两根之和等于一次项系数的相反数,两根之积等于常数项。
③推论2可以看作推论1的逆定理,利用推论2可以直接求出以两个数x1、x2为根的一元二次方程(二次项系数是1)是x2-(x1+x2)x+x1x2=0
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |