如图,已知反比例函数y1=kx和一次函数y2=ax+1的图象相交于第一象限内的点A,且点A的横坐标为1.过点A作AB⊥x轴于点B,△AOB的面积为1.(1)求反比例函数和一次函数的解析式.(2)若-数学

题文

如图,已知反比例函数y1=
k
x
和一次函数y2=ax+1的图象相交于第一象限内的点A,且点A的横坐标为1.过点A作AB⊥x轴于点B,△AOB的面积为1.
(1)求反比例函数和一次函数的解析式.
(2)若一次函数的图象与x轴相交于点C,求线段AC的长度.
(3)直接写出:当y1>y2>0时,x的取值范围.
(4)在y轴上是否存在一点P,使△PAO为等腰三角形?若存在,请直接写出p点坐标;若不存在,请说明理由.(要求至少写两个)
题型:解答题  难度:中档

答案

(1)∵S△AOB=1,
1
2
|k|=1,
∵y1=
k
x
经过第一象限,
∴k=2,
∴y1=
2
x

当x=1时代入y=
2
x
得:y=2,
∴点A坐标为:(1,2),
∵A(1,2)在y2=ax+1图象上,
∴2=a+1,
解得:a=1,
∴y2=x+1.

(2)当y2=0时代入y2=x+1得:x=-1,
∴C(-1,0),
在Rt△ABC中,∵∠ABC=90°,AB=2,BC=2,
∴AC=

AB2+BC2
=

22+22
=2

2


(3)由图可知:当0<x<1时,y1>y2>0;

(4)①若OP=OA,可得点P的坐标为(0,

5
)或(0,-

5
);
②若AP=AO,可得点P的坐标为(0,4).
综上可得:点P的坐标为(0,

5
)或(0,-

5
)或(0,4).

据专家权威分析,试题“如图,已知反比例函数y1=kx和一次函数y2=ax+1的图象相交于第一象..”主要考查你对  求反比例函数的解析式及反比例函数的应用  等考点的理解。关于这些考点的“档案”如下:

求反比例函数的解析式及反比例函数的应用

考点名称:求反比例函数的解析式及反比例函数的应用

  • 反比例函数解析式的确定方法:
    由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。

    反比例函数的应用:
    建立函数模型,解决实际问题。

  • 用待定系数法求反比例函数关系式的一般步骤是:
    ①设所求的反比例函数为:y= (k≠0);
    ②根据已知条件(自变量与函数的对应值)列出含k的方程;
    ③由代人法解待定系数k的值;
    ④把k值代人函数关系式y= 中。

    反比例函数应用一般步骤:
    ①审题;
    ②求出反比例函数的关系式;
    ③求出问题的答案,作答。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐