如图1,已知双曲线y=kx(k>0)与直线y=k′x交于A,B两点,点A在第一象限.试解答下列问题:(1)若点A的坐标为(4,2),则点B的坐标为______;若点A的横坐标为m,则点B的坐标可表示为-数学
题文
如图1,已知双曲线y=
(1)若点A的坐标为(4,2),则点B的坐标为______;若点A的横坐标为m,则点B的坐标可表示为______; (2)如图2,过原点O作另一条直线l,交双曲线y=
①说明四边形APBQ一定是平行四边形; ②设点A,P的横坐标分别为m,n,四边形APBQ可能是矩形吗?可能是正方形吗?若可能,直接写出m,n应满足的条件;若不可能,请说明理由. |
答案
(1)∵双曲线和直线y=k'x都是关于原点的中心对称图形,它们交于A,B两点, ∴B的坐标为(-4,-2), (-m,-k'm)或(-m,-
(2)①由勾股定理OA=
OB=
∴OA=OB. 同理可得OP=OQ, 所以四边形APBQ一定是平行四边形; ②四边形APBQ可能是矩形, 此时m,n应满足的条件是mn=k; 四边形APBQ不可能是正方形(1分) 理由:点A,P不可能达到坐标轴,即∠POA≠90°. |
据专家权威分析,试题“如图1,已知双曲线y=kx(k>0)与直线y=k′x交于A,B两点,点A在第一..”主要考查你对 求反比例函数的解析式及反比例函数的应用 等考点的理解。关于这些考点的“档案”如下:
求反比例函数的解析式及反比例函数的应用
考点名称:求反比例函数的解析式及反比例函数的应用
反比例函数解析式的确定方法:
由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。反比例函数的应用:
建立函数模型,解决实际问题。- 用待定系数法求反比例函数关系式的一般步骤是:
①设所求的反比例函数为:y= (k≠0);
②根据已知条件(自变量与函数的对应值)列出含k的方程;
③由代人法解待定系数k的值;
④把k值代人函数关系式y= 中。
反比例函数应用一般步骤:
①审题;
②求出反比例函数的关系式;
③求出问题的答案,作答。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:如图,已知第一象限内的点A在反比例函数y=2x的图象上,第二象限内的点B在反比例函数y=kx的图象上,且OA⊥OB,cosA=33,则k的值为()A.-3B.-4C.-3D.-23-数学
下一篇:如图,直线y=3x-3交x轴于B,交y轴于C,以OC为边作正方形OCEF,EF交双曲线y=kx于点M.且FM=OB.(1)求k的值.(2)请你连OM、OG、GM,并求S△OGM.(3)点P是双曲线上一点,点N为x轴上一-数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |