已知:关于x的一元二次方程x2+(n-2m)x+m2-mn=0①。(1)求证:方程①有两个实数根;(2)若m-n-1=0,求证方程①有一个实数根为1。(3)在(2)的条件下,设方程①的另一个根为a,当x=2时,-九年级数学

题文

已知:关于x的一元二次方程x2+(n-2m)x+m2-mn=0①。
(1)求证:方程①有两个实数根;
(2)若m-n-1=0,求证方程①有一个实数根为1。
(3)在(2)的条件下,设方程①的另一个根为a,当x=2时,关于m 的函数y1=nx+am与y2=x2+a(n-2m)x+m2-mn的图象交于点A、B(点A在点B的左侧),平行于y轴的直线l与y1、 y2的图象分别交于点C、D,当l沿AB由点A平移到点B时,求这个过程中线段CD的最大值。

题型:解答题  难度:中档

答案

解:(1)△=(n-2m)2-4(m2-mn)=n2
∵n2≥0,
∴△≥0,
∴方程①有两个实数根;
(2)由m-n-1=0,得m-n=1,
当x=1时,
等号左边=1+n-2m+m2-mn=1+n-2m+m(m-n)=1+n-2m+m=1+n-m=0,
等号右边=0,
∴左边=右边,
∴x=1是方程①的一个实数根; 
(3)解:由求根公式,得x=
∴x=m或x-=m-n,
∵m-n-10,
∴m-n=1,n=m-1,
∴a=m,
当x=2时,y1=2n+m2=2(m-1)+ m2=m2+2m-2,
y2=22+2m(n-m-m)+m(m-n)= 4+2m(-l-m)+m=-2m2-m+ 4,
如图,当l沿AB由点A平移到点B 时,
CD=y2-y1=3m2-3m+6=-3(m+2+
由y1=y2,得m2+2m-2=-2m2-m+4,
解得m=-2或m=1
∴mA=-2,mB=1
-2<-<1,
∴当m=-时,CD取得最大值

据专家权威分析,试题“已知:关于x的一元二次方程x2+(n-2m)x+m2-mn=0①。(1)求证:方程①有..”主要考查你对  求二次函数的解析式及二次函数的应用,一元二次方程的解法,平移  等考点的理解。关于这些考点的“档案”如下:

求二次函数的解析式及二次函数的应用一元二次方程的解法平移

考点名称:求二次函数的解析式及二次函数的应用

  • 求二次函数的解析式:
    最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:
    (1)已知抛物线上三点的坐标,一般选用一般式;
    (2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
    (3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;
    (4)已知抛物线上纵坐标相同的两点,常选用顶点式。

    二次函数的应用:
    (1)应用二次函数才解决实际问题的一般思路:
    理解题意;
    建立数学模型;
    解决题目提出的问题。
    (2)应用二次函数求实际问题中的最值:
    即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。
    求最值时,要注意求得答案要符合实际问题。

  • 二次函数的三种表达形式:
    ①一般式:
    y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]
    把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。

    ②顶点式:
    y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。
    有时题目会指出让你用配方法把一般式化成顶点式。
    例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。
    解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。
    注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。
    具体可分为下面几种情况:
    当h>0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;
    当h<0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;
    当h>0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;
    当h>0,k<0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;
    当h<0,k>0时,将抛物线y=ax2向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象;
    当h<0,k<0时,将抛物线y=ax2向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。

    ③交点式:
    y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有交点时的抛物线,即b2-4ac≥0] .
    已知抛物线与x轴即y=0有交点A(x1,0)和 B(x2,0),我们可设y=a(x-x1)(x-x2),然后把第三点代入x、y中便可求出a。

    由一般式变为交点式的步骤:
    二次函数
    ∵x1+x2=-b/a, x1?x2=c/a(由韦达定理得),
    ∴y=ax2+bx+c
    =a(x2+b/ax+c/a)
    =a[x2-(x1+x2)x+x1?x2]
    =a(x-x1)(x-x2).
    重要概念:
    a,b,c为常数,a≠0,且a决定函数的开口方向。a>0时,开口方向向上;
    a<0时,开口方向向下。a的绝对值可以决定开口大小。
    a的绝对值越大开口就越小,a的绝对值越小开口就越大。
    能灵活运用这三种方式求二次函数的解析式;
    能熟练地运用二次函数在几何领域中的应用;
    能熟练地运用二次函数解决实际问题。

  • 二次函数的其他表达形式:
    ①牛顿插值公式:
    f(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...f[x0,...xn](x-x0)...(x-xn-1)+Rn(x)由此可引导出交点式的系数a=y/(x·x)(y为截距) 
    二次函数表达式的右边通常为二次三项式。

    双根式
    y=a(x-x1)*(x-x2)
    若ax2+bx+c=0有两个实根x1,x2,则y=a(x-x
  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐