抛物线y=ax2+bx+c与y轴交于点C(0,-2),与直线y=x交于点A(-2,-2),B(2,2)。(1)求抛物线的解析式;(2)如图,线段MN在线段AB上移动(点M与点A不重合,点N与点B不重合),且,若-九年级数学

题文

抛物线y=ax2+bx+c与y轴交于点C(0,-2),与直线y=x交于点A(-2,-2),B(2,2)。
(1)求抛物线的解析式;
(2)如图,线段MN在线段AB上移动(点M与点A不重合,点 N与点B不重合),且,若M点的横坐标为m,过点M作x轴的垂线与轴交于点P,过点N作x轴的垂线与抛物线交于点Q,以点P,M,Q,N为顶点的四边形能否为平行四边形?若能,请求出m的值;若不能,请说明理由。

题型:解答题  难度:偏难

答案

解:(1)抛物线过点C(0,-2)可得c=-2,
把点A(-2,-2),B(2,2)代入得,
,解得
∴抛物线的解析式为:
(2)∵MN=,点A,B都在直线y=x上,MN在线段AB上,M的横坐标为m,
如图1,过点M作x轴的平行线,过点N作y轴的平行线,它们相交于点H,
∴△MHN是等腰直角三角形,
∴MH=NH=1,
∴点N的坐标为(m+1,m+1);
① 如图2,当m<0时,PM=-m,

当四边形PMQN为平行四边形时,PM=NQ,

解得(舍去),
②如图3,当m>0时,PM=m,

当四边形PMNQ为平行四边形时,PM=NQ,

解得(舍去),
∴当时,以点P,M,N,Q为顶点的四边形为平行四边形。


据专家权威分析,试题“抛物线y=ax2+bx+c与y轴交于点C(0,-2),与直线y=x交于点A(-2,-2..”主要考查你对  求二次函数的解析式及二次函数的应用,平行四边形的判定  等考点的理解。关于这些考点的“档案”如下:

求二次函数的解析式及二次函数的应用平行四边形的判定

考点名称:求二次函数的解析式及二次函数的应用

  • 求二次函数的解析式:
    最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:
    (1)已知抛物线上三点的坐标,一般选用一般式;
    (2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
    (3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;
    (4)已知抛物线上纵坐标相同的两点,常选用顶点式。

    二次函数的应用:
    (1)应用二次函数才解决实际问题的一般思路:
    理解题意;
    建立数学模型;
    解决题目提出的问题。
    (2)应用二次函数求实际问题中的最值:
    即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。
    求最值时,要注意求得答案要符合实际问题。

  • 二次函数的三种表达形式:
    ①一般式:
    y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]
    把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。

    ②顶点式:
    y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。
    有时题目会指出让你用配方法把一般式化成顶点式。
    例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。
    解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。
    注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。
    具体可分为下面几种情况:
    当h>0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;
    当h<0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;
    当h>0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;
    当h>0,k<0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;
    当h<0,k>0时,将抛物线y=ax2向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象;

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐