a、b为正整数,且a>b,若ab-a-b-4=0,则a=______.-数学

题文

a、b为正整数,且a>b,若ab-a-b-4=0,则a=______.
题型:填空题  难度:中档

答案

∵ab-a-b-4=0,
∴b(a-1)=a+4,
∴b=
a+4
a-1
=
a-1+5
a-1
=1+
5
a-1

∵a,b为正整数,
∴a-1是5的正约数,
∴a-1=1或a-1=5,
∴a=2或a=6,
若a=2,则b=6,和a>b矛盾,舍去;
若a=6,b=2,成立.
∴a=6.
故答案为:6.

据专家权威分析,试题“a、b为正整数,且a>b,若ab-a-b-4=0,则a=______.-数学-”主要考查你对  二元多次(二次以上)方程(组)  等考点的理解。关于这些考点的“档案”如下:

二元多次(二次以上)方程(组)

考点名称:二元多次(二次以上)方程(组)

  • 定义:二元二次方程组即至少有一个二元二次方程的方程组,另一个是不高于二次的二元整式方程
    二元二次方程组求解的基本思想是“转化”,即通过“降次”、“消元”,将方程组转化为一元二次方程或二元一次方程组。由于这类方程组形式庞杂,解题方法灵活多样,具有较强的技巧性,因而在解这类方程组时,要认真分析题中各个方程的结构特征,选择较恰当的方法。
    二元二次方程组的一般解法是代入法:
    在(1)中先将x看作常量,把(1)看作关于x的一元二次方程,用y表示x后,代入(2)中,得到关于y的方程。因为在解(1)的结果中,可能得到y是x的双值函数,所以可能得到两个方程,也可能得到无理方程,无理方程有理化后,最高可能得到四次方程,但仍有代数解。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐