将一副三角尺按如图方式叠在一起,三角尺的3个角的顶点是A、C、D,记作“三角尺ACD”;三角尺的3个角的顶点是E、C、B,记作“三角尺ECB”,且∠ACD=∠ECB=90°,∠A=60°,∠D=30°,∠E-数学
题文
将一副三角尺按如图方式叠在一起,三角尺的3个角的顶点是A、C、D,记作“三角尺ACD”;三角尺的3个角的顶点是E、C、B,记作“三角尺ECB”,且∠ACD=∠ECB=90°,∠A=60°,∠D=30°,∠E=∠B=45°. (1)若∠ACB=140°,求∠DCE的度数; (2)比较∠ACE与∠DCB的大小,并说明理由; (3)三角尺ACD不动,将三角尺BCE的CE边与CA边重合,然后绕点C按顺时针方向任意转动一个角度,当∠ACE等于多少度时(0°<∠ACE<90°),这两块三角尺各有一条边所在的直线互相垂直,请直接写出∠ACE所有可能的值,不必说明理由.(提示:三角形内角和为180°.) |
答案
(1)∵∠ACB=140°,∠ECB=90°, ∴∠ECA=140°-90°=50°, ∵∠ACD=90°, ∴∠DCE=90°-50°=40°; (2)∠ACE=∠BCD, 理由是:∵∠ACD=∠ECB=90°, ∴∠ACD-∠ECD=∠ECB-∠ECD, ∴∠ACE=∠BCD; (3)可以是30°,45°,75°. |
据专家权威分析,试题“将一副三角尺按如图方式叠在一起,三角尺的3个角的顶点是A、C、D..”主要考查你对 角平分线的定义 等考点的理解。关于这些考点的“档案”如下:
角平分线的定义
考点名称:角平分线的定义
- 角的平分线的定义:
一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线。 角平分线的性质:
角平分线上的点,到角两边的距离相等
定理:
角平分线上的任意一点,到角两边的距离相等。垂直于两边为最短距离。角平分线能得到相同的两个角。三角形三条角平分线相交于一点,并且这一点到三边的距离相等。
逆定理:
到角两边的距离相等的点在角平分线上。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |