如图,AD⊥BC于D,EG⊥BC于G,∠E=∠1,求证:AD平分∠BAC。-七年级数学
题文
如图,AD⊥BC于D,EG⊥BC于G,∠E=∠1,求证:AD平分∠BAC。 |
答案
根据垂直的定义可得∠ADC=∠EGC=90°,即可证得AD∥EG,根据平行线的性质可得∠1=∠2,∠E=∠3,再结合∠E=∠1可得∠2=∠3,从而可以证得结论. |
试题分析:证明:∵AD⊥BC,EG⊥BC ∴∠ADC=∠EGC=90° ∴AD∥EG ∴∠1=∠2,∠E=∠3 ∵∠E=∠1 ∴∠2=∠3 ∴AD平分∠BAC. 点评:平行线的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握. |
据专家权威分析,试题“如图,AD⊥BC于D,EG⊥BC于G,∠E=∠1,求证:AD平分∠BAC。-七年级数学..”主要考查你对 点、线、面、体 等考点的理解。关于这些考点的“档案”如下:
点、线、面、体
考点名称:点、线、面、体
- 点动成线,线动成面,面动成体:
长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体,几何体也简称体。
包围着体的是面,面有平的面和曲的面两种。
夜晚流星划过天空时留下一道明亮的光线,节日的焰火画出的曲线组成优美的图案,这些都给我们以线的形象,面和面相交的地方形成线。
天上的星星、世界地图上的城市等都给我们以点的形象,线和线相交的地方是点。
几何图形都是由点、线、面、体组成的,点是构成图形的基本元素。 - 常见几何体的三视图:
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:如图,小聪把一块含有60°角的直角三角板的两个顶点放在直尺的对边上,并测得∠1=25°,则∠2的度数是A.15°B.25°C.35°D.45°-七年级数学
下一篇:如图,在四边形ABCD中,AD∥BC,点O在AD上,BO、CO分别平分∠ABC、∠DCB,若∠A+∠D=208°,求∠OBC+∠OCB的度数。请你将解答过程补充完整。-七年级数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |