若n0=a0+b0,则可产生新数n1=a0b0,若n1=a1+b1,则可产生新数n2=a1b1,若n2=a2+b2,则可产生新数n3=a2b2;….按此方法可产生一系列新数:n1,n2,n3….问能否用这种方法数次,由-数学

题文

若n0=a0+b0,则可产生新数n1=a0b0
若n1=a1+b1,则可产生新数n2=a1b1
若n2=a2+b2,则可产生新数n3=a2b2;….
按此方法可产生一系列新数:n1,n2,n3….问能否用这种方法数次,由数10逐步产生数2003,若能,请写出一个产生的过程;若不能,请说明理由.
题型:解答题  难度:中档

答案

能.
∵2003=1×2003,可由2004=2003+1推出;
而2004=551×4,可由555=551+4推出;
同理,555=111×5,可由116=111+5推出;
116=4×29,可由33=4+29推出;
33=11×3,可由14=11+3推出;
14=2×7,可由9=2+7推出;
而9=1×9,可由10=1+9推出.
故可由10经7次推导后得到2003.

据专家权威分析,试题“若n0=a0+b0,则可产生新数n1=a0b0,若n1=a1+b1,则可产生新数n2=..”主要考查你对  整式的加减乘除混合运算  等考点的理解。关于这些考点的“档案”如下:

整式的加减乘除混合运算

考点名称:整式的加减乘除混合运算

  • 加法、减法、乘法和除法,统称为四则运算。
    其中,加法和减法叫做第一级运算;乘法和除法叫做第二级运算。
    注意运算顺序,先做乘方,再做乘除,最做加减运算,如果有同类项,就合并同类项,要求结果必须是最简形式。

  • 基本运算顺序:
    只有一级运算时,从左到右计算;
    有两级运算时,先乘除,后加减。
    有括号时,先算括号里的;
    有多层括号时,先算小括号里的。
    要是有平方,先算平方。
    在混合运算中,先算括号内的数,括号从小到大,然后从高级到低级。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐