(1)探究新知:如图1,已知△ABC与△ABD的面积相等,试判断AB与CD的位置关系,并说明理由.(2)结论应用:如图2,点M,N在反比例函数y=kx(k>0)的图象上,过点M作ME⊥y轴,过点N作NF⊥-数学
题文
(1)探究新知:如图1,已知△ABC与△ABD的面积相等,试判断AB与CD的位置关系,并说明理由. (2)结论应用:如图2,点M,N在反比例函数y=
(3)变式探究:如图3,点M,N在反比例函数y=
|
题文
(1)探究新知:如图1,已知△ABC与△ABD的面积相等,试判断AB与CD的位置关系,并说明理由. (2)结论应用:如图2,点M,N在反比例函数y=
(3)变式探究:如图3,点M,N在反比例函数y=
|
题型:解答题 难度:中档
答案
(1)分别过点C,D,作CG⊥AB,DH⊥AB,垂足为G,H,则∠CGA=∠DHB=90°. ∴CG∥DH. ∵△ABC与△ABD的面积相等, ∴CG=DH. ∴四边形CGHD为平行四边形. ∴AB∥CD. (2)证明:连结MF,NE. 设点M的坐标为(x1,y1),点N的坐标为(x2,y2). ∵点M,N在反比例函数y=
∴x1y1=k,x2y2=k. ∵ME⊥y轴,NF⊥x轴, ∴OE=y1,OF=x2. ∴S△EFM=
S△EFN=
∴S△EFM=S△EFN. 由(1)中的结论可知:MN∥EF. (3)证明:连接FM、EN、MN, 同(2)可证MN∥EF, 同法可证GH∥MN, 故EF∥GH. |
据专家权威分析,试题“(1)探究新知:如图1,已知△ABC与△ABD的面积相等,试判断AB与CD的位..”主要考查你对 求反比例函数的解析式及反比例函数的应用 等考点的理解。关于这些考点的“档案”如下:
求反比例函数的解析式及反比例函数的应用
考点名称:求反比例函数的解析式及反比例函数的应用
反比例函数解析式的确定方法:
由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。
反比例函数的应用:
建立函数模型,解决实际问题。
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |