两个反比例函数y=kx和y=1x在第一象限内的图象如图所示,点P在y=kx的图象上,PC⊥x轴于点C,交y=1x的图象于点A,PD⊥y轴于点D,交y=1x的图象于点B,当点P在y=kx的图象上运动时,-数学

题文

两个反比例函数y=
k
x
和y=
1
x
在第一象限内的图象如图所示,点P在y=
k
x
的图象上,PC⊥x轴于点C,交y=
1
x
的图象于点A,PD⊥y轴于点D,交y=
1
x
的图象于点B,当点P在y=
k
x
的图象上运动时,以下结论:①△ODB与△OCA的面积相等;②四边形PAOB的面积不会发生变化;③PA与PB始终相等;④当点A是PC的中点时,点B一定是PD的中点.其中一定正确的是______.
题型:填空题  难度:中档

答案

(1)设A(x1,y1),B(x2,y2),则有x1y1=x2y2=1,
∵S△ODB=
1
2
×BD×OD=
1
2
x2y2=
1
2
,S△OCA=
1
2
×OC×AC=
1
2
x1y1=
1
2
,故①正确;

(2)由已知,得P(x1,y2),
∵P点在y=
k
x
的图象上,
∴S矩形OCPD=OC×PD=x1y2=k,
∴S四边形PAOB=S矩形OCPD-S△ODB-S△OCA=k-
1
2
-
1
2
=k-1,故②正确;

(3)由已知得x1y2=k,即x1?
1
x2
=k,
∴x1=kx2
根据题意,得PA=y2-y1=
1
x2
-
1
x1
=
k-1
kx2
,PB=x1-x2,=(k-1)x2,故③错误;

(4)当点A是PC的中点时,y2=2y1
代入x1y2=k中,得2x1y1=k,
∴k=2,
代入x1=kx2中,得x1=2x2,故④正确.

故本题答案为:①②④.

据专家权威分析,试题“两个反比例函数y=kx和y=1x在第一象限内的图象如图所示,点P在y=k..”主要考查你对  求反比例函数的解析式及反比例函数的应用  等考点的理解。关于这些考点的“档案”如下:

求反比例函数的解析式及反比例函数的应用

考点名称:求反比例函数的解析式及反比例函数的应用

  • 反比例函数解析式的确定方法:
    由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。

    反比例函数的应用:
    建立函数模型,解决实际问题。

  • 用待定系数法求反比例函数关系式的一般步骤是:
    ①设所求的反比例函数为:y= (k≠0);
    ②根据已知条件(自变量与函数的对应值)列出含k的方程;
    ③由代人法解待定系数k的值;
    ④把k值代人函数关系式y= 中。

    反比例函数应用一般步骤:
    ①审题;
    ②求出反比例函数的关系式;
    ③求出问题的答案,作答。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐