如图,正比例函数y=12x的图象与反比例函数y=kx(k≠0)在第一象限的图象交于A点,过A点作x轴的垂线,垂足为M,已知△OAM的面积为1.(1)求反比例函数的解析式;(2)如果B(a,b)为反-数学

题文

如图,正比例函数y=
1
2
x的图象与反比例函数y=
k
x
(k≠0)在第一象限的图象交于A点,过A点作x轴的垂线,垂足为M,已知△OAM的面积为1.
(1)求反比例函数的解析式;
(2)如果B(a,b)为反比例函数在第一象限图象上的点,且b=2a,试探究在x轴上是否存在点P,使△PAB周长最小?若存在,求点P的坐标;若不存在,请说明理由.
题型:解答题  难度:中档

答案

(1)∵反比例函数y=
k
x
(k≠0)在第一象限,
∴k>0,
∵△OAM的面积为1,
1
2
k=1,解得k=2,
故反比例函数的解析式为:y=
2
x


(2)∵点A是正比例函数y=
1
2
x与反比例函数y=
2
x
的交点,且x>0,y>0,

y=
1
2
x
y=
2
x

解得

x=2
y=1

∴A(2,1),
∵B(a,b)为反比例函数在第一象限图象上的点,且b=2a,
∴b=
2
a

∵b=2a,
∴a=1,b=2,
∴B(1,2),
∵AB的距离为定值,
∴若使△PAB周长最小则PA+PB的值最小,
如图所示:作出A点关于x轴的对称点C,并连接BC,交x轴于点P,P为所求点,设A点关于x轴的对称点为C,则C点的坐标为(2,-1),
令直线BC的解析式为y=mx+n,将B、C两点的坐标代入得,

2m+n=-1
m+n=2

解得

m=-3
n=5

故直线BC的解析式为:y=-3x+5,
当y=0时,x=
5
3

则点P(
5
3
,0).

据专家权威分析,试题“如图,正比例函数y=12x的图象与反比例函数y=kx(k≠0)在第一象限的..”主要考查你对  求反比例函数的解析式及反比例函数的应用  等考点的理解。关于这些考点的“档案”如下:

求反比例函数的解析式及反比例函数的应用

考点名称:求反比例函数的解析式及反比例函数的应用

  • 反比例函数解析式的确定方法:
    由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。

    反比例函数的应用:
    建立函数模型,解决实际问题。

  • 用待定系数法求反比例函数关系式的一般步骤是:
    ①设所求的反比例函数为:y= (k≠0);
    ②根据已知条件(自变量与函数的对应值)列出含k的方程;
    ③由代人法解待定系数k的值;
    ④把k值代人函数关系式y= 中。

    反比例函数应用一般步骤:
    ①审题;
    ②求出反比例函数的关系式;
    ③求出问题的答案,作答。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐