如图,点D在反比例函数y=kx(k>0)上,点C在x轴的正半轴上且坐标为(4,0),△ODC是以CO为斜边的等腰直角三角形.(1)求反比例函数的解析式;(2)点B为横坐标为1的反比例函数图象上-数学

题文

如图,点D在反比例函数y=
k
x
(k>0)上,点C在x轴的正半轴上且坐标为(4,0),△ODC是以CO为斜边的等腰直角三角形.
(1)求反比例函数的解析式;

(2)点B为横坐标为1的反比例函数图象上的一点,BA、BE分别垂直x轴和y轴,连接OB,将OABE沿OB折叠,使A点落在点A′处,A′B与y轴交于点F,求OF的长;

(3)直线y=-x+3交x轴于M点,交y轴于N点,点P是双曲线y=
k
x
(k>0)上的一动点,PQ⊥x轴于Q点,PR⊥y轴于R点,PQ,PR与直线MN交于H,G两点.给出下列两个结论:①△PGH的面积不变;②MG?NH的值不变,其中有且只有一个结论是正确的,请你选择并证明求值.
题型:解答题  难度:中档

答案

(1)由题可知:D(2,2),
因为点D在反比例函数y=
k
x
(k>0)上,
所以k=4,
∴y=
4
x


(2)B点的坐标为(1,4),可知△EBF≌△A'OF,
设OF=x,则EF=A'F=4-x,
在直角三角形A′OF中,A′F2+A′O2=OF2
∴(4-x)2+1=x2
解得:x=
17
8


(3)MG?NH的值不变,且值为8.
由y=-x+3得:OM=ON
∴∠OMN=∠ONM=45°
∴MG=

2
PQ,NH=

2
PR
∴MG?NH=2PQ?PR=8.

据专家权威分析,试题“如图,点D在反比例函数y=kx(k>0)上,点C在x轴的正半轴上且坐标为..”主要考查你对  求反比例函数的解析式及反比例函数的应用  等考点的理解。关于这些考点的“档案”如下:

求反比例函数的解析式及反比例函数的应用

考点名称:求反比例函数的解析式及反比例函数的应用

  • 反比例函数解析式的确定方法:
    由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。

    反比例函数的应用:
    建立函数模型,解决实际问题。

  • 用待定系数法求反比例函数关系式的一般步骤是:
    ①设所求的反比例函数为:y= (k≠0);
    ②根据已知条件(自变量与函数的对应值)列出含k的方程;
    ③由代人法解待定系数k的值;
    ④把k值代人函数关系式y= 中。

    反比例函数应用一般步骤:
    ①审题;
    ②求出反比例函数的关系式;
    ③求出问题的答案,作答。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐