甲,乙二人先后从一个包裹中轮流取糖果,甲先取1块,乙接着取2块,然后甲再取4块,乙接着取8块,…,如此继续.当包裹中的糖果少于应取的块数时,则取走包裹中所有糖果,若甲共-数学
题文
甲,乙二人先后从一个包裹中轮流取糖果,甲先取1块,乙接着取2块,然后甲再取4块,乙接着取8块,…,如此继续.当包裹中的糖果少于应取的块数时,则取走包裹中所有糖果,若甲共取了90块糖果,则最初包裹中有______块糖果. |
答案
甲取的糖果数是20+22+24+…+22n=90, 因为1+4+16+64+5=90, 所以甲共取了5次,4次完整的,最后的5块是包裹中的糖果少于应取的块数,说明乙取了4次完整的数, 即乙取了21+23+25+27=2+8+32+128=170(块), 90+170=260(块), 答:最初包裹中有 260块糖果. 故答案为:260. |
据专家权威分析,试题“甲,乙二人先后从一个包裹中轮流取糖果,甲先取1块,乙接着取2块..”主要考查你对 转化的策略 等考点的理解。关于这些考点的“档案”如下:
转化的策略
考点名称:转化的策略
- 转化问题有:
等积转化(把平行四边形转化成长方形);
把不规则的图形转化成规则的图形求周长;
把加法转化成减法,把数字转化成图形等等,总之是把复杂,未知,陌生的转化成简单,已知和熟悉的。 - 学习数学的过程就是不断转化的过程:
复杂转化为简单,陌生转化为熟悉,
抽象转化为具体,未知转化为已知。
掌握转化的策略,对学好数学至关重要。
总结:多位数学家说过:“什么叫解题?解题就是把题目转化为已经解过的题。 - 数学中运用转化的实例:
a、面积或体积公式的推导过程中用过“形的转化”:
平行四边形→长方形;
三角形、梯形→平行四边形;
圆→长方形;
圆柱→长方体;
圆锥→圆柱
b、计算中用过数的转化:
异分母分数加减法→同分母分数加减法;
小数乘除法→整数乘除法;
分数除法→分数乘法
c、简便计算中用过的式的转化:
这些运用转化的策略解决问题的过程有一个共同点:新问题→熟悉的问题
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:如图,先将4黑1白共5个棋子放在圆上,然后在同色的两子之间放入一个白子,在异色的两子之间放入一个黑子,再将原来的5个棋子拿掉.如此不断操作下去,圆圈上的5个棋子中最多有-数学
下一篇:甲、乙、丙、丁四位同学围成一个圈依序循环报数,规定:①甲、乙、丙、丁首次报出的数依次是1、2、3、4,接着甲报5,乙报6…按此规律,后一位同学报出的数比前一位同学报出的数-数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |