如图,把圆圈上的8个位置从1到8编号,现在有一个小球,第一天从1号位置开始顺时针前进329个位置,第二天再逆时针前进485个位置,第三天又顺时针前进329个位置,第四天又逆时-数学

首页 > 考试 > 数学 > 小学数学 > 转化的策略/2019-08-14 / 加入收藏 / 阅读 [打印]

题文

如图,把圆圈上的8个位置从1到8编号,现在有一个小球,第一天从1号位置开始顺时针前进329个位置,第二天再逆时针前进485个位置,第三天又顺时针前进329个位置,第四天又逆时针前进485个位置,…,依此类推,那么最少经过(  )天后,小球又回到原来的1号位置.
题型:解答题  难度:中档

答案

因为小球又回到原来的1号位置必须走8个位置,
485-329=156(个);
所以,要求小球又回到原来的1号位置,就是看8能将156×n整除,得出最小的数n;
因为156含有4这个因数:156=4×3×13;因此n最小为2;
所以,最少经过2×2=4(天)小球回到1号位置.

据专家权威分析,试题“如图,把圆圈上的8个位置从1到8编号,现在有一个小球,第一天从1..”主要考查你对  转化的策略  等考点的理解。关于这些考点的“档案”如下:

转化的策略

考点名称:转化的策略

  • 转化问题有:
    等积转化(把平行四边形转化成长方形);
    把不规则的图形转化成规则的图形求周长;
    把加法转化成减法,把数字转化成图形等等,总之是把复杂,未知,陌生的转化成简单,已知和熟悉的。

  • 学习数学的过程就是不断转化的过程
    复杂转化为简单,陌生转化为熟悉,
    抽象转化为具体,未知转化为已知。
    掌握转化的策略,对学好数学至关重要。
    总结:多位数学家说过:“什么叫解题?解题就是把题目转化为已经解过的题。

  • 数学中运用转化的实例:
    a、面积或体积公式的推导过程中用过“形的转化”:
    平行四边形→长方形;
    三角形、梯形→平行四边形;
    圆→长方形;
    圆柱→长方体;
    圆锥→圆柱
    b、计算中用过数的转化:
    异分母分数加减法→同分母分数加减法;
    小数乘除法→整数乘除法;
    分数除法→分数乘法
    c、简便计算中用过的式的转化:
    这些运用转化的策略解决问题的过程有一个共同点:新问题→熟悉的问题

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐