圆周上放有N枚棋子,如图所示,B点的-枚棋子紧邻A点的棋子.小洪首先拿走B点处的l枚棋子,然后顺时针每格一枚拿走2枚棋子,连续转了10周,9次越过A.当将要第10次越过A处棋子取-数学
题文
圆周上放有N枚棋子,如图所示,B点的-枚棋子紧邻A点的棋子.小洪首先拿走B点处的l枚棋子,然后顺时针每格一枚拿走2枚棋子,连续转了10周,9次越过A.当将要第10次越过A处棋子取走其它棋子时,小洪发现圆周上余下20多枚棋子.若N是l4的倍数,请帮肋小洪精确计算一下圆周上还有多少枚棋子? |
答案
设圆周上余a枚棋子,小洪拿走了2(39a-1)+1枚棋子, 所以N=2(39a-1)+1+39a=310a-1. N=310a-1=59049a-1是14的倍数.N就是2和7的公倍数,所以a必须是奇数; 又N=(7×8435+4)a-1=7×8435a+4a-1, 所以4a-1必须是7的倍数.当a=21,25,27,29时,4a-1不是7的倍数, 当a=23时,4a-1=91=7×13,是7的倍数. 答:圆周上还有23枚棋子. |
据专家权威分析,试题“圆周上放有N枚棋子,如图所示,B点的-枚棋子紧邻A点的棋子.小洪首..”主要考查你对 转化的策略 等考点的理解。关于这些考点的“档案”如下:
转化的策略
考点名称:转化的策略
- 转化问题有:
等积转化(把平行四边形转化成长方形);
把不规则的图形转化成规则的图形求周长;
把加法转化成减法,把数字转化成图形等等,总之是把复杂,未知,陌生的转化成简单,已知和熟悉的。 - 学习数学的过程就是不断转化的过程:
复杂转化为简单,陌生转化为熟悉,
抽象转化为具体,未知转化为已知。
掌握转化的策略,对学好数学至关重要。
总结:多位数学家说过:“什么叫解题?解题就是把题目转化为已经解过的题。 - 数学中运用转化的实例:
a、面积或体积公式的推导过程中用过“形的转化”:
平行四边形→长方形;
三角形、梯形→平行四边形;
圆→长方形;
圆柱→长方体;
圆锥→圆柱
b、计算中用过数的转化:
异分母分数加减法→同分母分数加减法;
小数乘除法→整数乘除法;
分数除法→分数乘法
c、简便计算中用过的式的转化:
这些运用转化的策略解决问题的过程有一个共同点:新问题→熟悉的问题
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:如图,一个圆盘上均匀地依次表示第1、2、3、…、12个洞.有一只小虫从1号洞按顺时针方向起跳,规定它跳的步数是它起跳洞的数码.例如,第1次从第1洞跳到第1洞,第2次从第2洞跳2-数学
下一篇:圆周上放有N枚棋子,如图所示,小洪先拿走B点的一枚棋子,然后沿顺时针方向每隔一枚棋子拿走两枚棋子,这样连续转了10周,9次越过A,当将要第10次越过A取走其它子的时候,小-数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |