(1)探究新知:①如图,已知AD∥BC,AD=BC,点M,N是直线CD上任意两点。求证:△ABM与△ABN的面积相等;②如图,已知AD∥BE,AD=BE,AB∥CD∥EF,点M是直线CD上任一点,点G是直线EF上任-九年级数学

题文

(1)探究新知:
①如图,已知AD∥BC,AD=BC,点M,N是直线CD上任意两点。
求证:△ABM与△ABN的面积相等;

②如图,已知AD∥BE,AD=BE,AB∥CD∥EF,点M是直线CD上任一点,点G是直线EF上任一点,试判断△ABM与△ABG的面积是否相等,并说明理由。

(2)结论应用:
如图③,抛物线y=ax2+bx+c的顶点为C(1,4),交x轴于点A(3,0),交y轴于点D,试探究在抛物线y=ax2+bx+c上是否存在除点C以外的点E,使得△ADE与△ACD的面积相等? 若存在,请求出此时点E的坐标,若不存在,请说明理由。(友情提示:解答本问题过程中,可以直接使用“探究新知”中的结论。)

题型:解答题  难度:偏难

答案

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐
解:(1)①证明:分别过点M,N作ME⊥AB,NF⊥AB,垂足分别为点E,F,
∵AD∥BC,AD=BC,
∴四边形ABCD为平行四边形,
∴AB∥CD,
∴ME=NF,
∵S△ABM=,S△ABN=
∴S△ABM=S△ABN
②相等,理由如下:
分别过点D,E作DH⊥AB,EK⊥AB,垂足分别为H,K.则∠DHA=∠EKB=90°,
∵AD∥BE,
∴∠DAH=∠EBK,
∵AD=BE,
∴△DAH≌△EBK,
∴DH=EK,
∵CD∥AB∥EF,
∴S△ABM=,S△ABG=
∴S△ABM= S△ABG


(2)答:存在,
解:因为抛物线的顶点坐标是C(1,4),所以,可设抛物线的表达式为, 又因为抛物线经过点A(3,0),将其坐标代入上式,得,解得
∴该抛物线的表达式为,即
∴D点坐标为(0,3),
设直线AD的表达式为,代入点A的坐标,得,解得k=-1,
∴直线AD的表达式为
过C点作CG⊥x轴,垂足为G,交AD于点H,则H点的纵坐标为-1+3=2,
∴CH=CG-HG=4-2=2,
设点E的横坐标为m,则点E的纵坐标为
过E点作EF⊥x轴,垂足为F,交AD于点P,则点P的纵坐标为3-m,EF∥CG,
由(1)可知:若EP=CH,则△ADE与△ADC的面积相等,
①若E点在直线AD的上方(如图③-1),
则PF=3-m,EF=
∴EP=EF-PF==

解得
当m=2时,PF=3-2=1,EF=1+2=3,
∴E点坐标为(2,3),
同理 当m=1时,E点坐标为(1,4),与C点重合,
②若E点在直线AD的下方(如图③-2,③-3),


解得
时,E点的纵坐标为
时,E点的纵坐标为
∴在抛物线上存在除点C以外的点E,使得△ADE与△ACD的面积相等,E点的坐标为E1(2,3);
如图,抛物线y=x2+bx+c与x轴交于A(-1,0)、B(3,0)两点。(1)求该抛物线的解析式;(2)设(1)中的抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置时,满足S△PAB=8,并求-九年级数学
如图,抛物线y=x2+bx+c与x轴
已知抛物线与x轴交于A(-1,0)和B(3,0)两点,且与y轴交于点C(0,3)。(1)求抛物线的解析式;(2)抛物线的对称轴方程和顶点M坐标;(3)求四边形ABMC的面积。-九年级数学
已知抛物线与x轴交于A(-1,
已知二次函数y=ax2+bx+c的图象经过(﹣1,﹣),B(0,﹣4),C(4,0)三点,则二次函数的解析式是(),顶点D的坐标是(),对称轴方程是().-九年级数学
已知二次函数y=ax2+bx+c的图
已知:在矩形AOBC中,OB=4,OA=3,分别以OB,OA所在直线为x轴和y轴,建立如图所示的平面直角坐标系,F是边BC上的一个动点(不与B,C重合),过F点的反比例函数(k>0)的图象与AC边-九年级数学
已知:在矩形AOBC中,OB=4,
已知抛物线y=ax2+bx+c与x轴的两个交点的横坐标是方程x2+x-2=0的两个根,且抛物线过点(2,8),求二次函数的解析式。-九年级数学
已知抛物线y=ax2+bx+c与x轴的
上一篇:如图,矩形ABCD的顶点A、B的坐标分别为(-4,0)和(2,0),BC=,设直线AC与直线x=4交于点E。(1)求以直线x=4为对称轴,且过C与原点O的抛物线的函数关系式,并说明此抛物线一定过-九年级数学     下一篇:已知二次函数y1=x2-2x-3及一次函数y2=x+m。(1)求该二次函数图象的顶点坐标以及它与x轴的交点坐标;(2)将该二次函数图象在x轴下方的部分沿x轴翻折到x轴上方,图象的其余部分不-九年级数学
零零教育社区:论坛热帖子