如图,(1)在△ABC中,∠A=52°,∠ABC与∠ACB的角平分线交于D1,∠ABD1与∠ACD1的角平分线交于点D2,依此类推,∠ABD4与∠ACD4的角平分线交于点D5,则∠BD5C的度数是______.(2)在△ABC中-数学

题文

如图,
(1)在△ABC中,∠A=52°,∠ABC与∠ACB的角平分线交于D1,∠ABD1与∠ACD1的角平分线交于点D2,依此类推,∠ABD4与∠ACD4的角平分线交于点D5,则∠BD5C的度数是______.
(2)在△ABC中,∠ABC与∠ACB的角平分线交于D1,∠ABD1与∠ACD1的角平分线交于点D2,∠ABD2与∠ACD2的角平分线交于点D3,若∠BD3C的度数是n°,则∠A的度数是______(用含n的代数式表示).
题型:解答题  难度:中档

答案

(1)∵∠A=52°,∴∠ABC+∠ACB=180°-52°=128°,
又∠ABC与∠ACB的角平分线交于D1
∴∠ABD1=∠CBD1=
1
2
∠ABC,∠ACD1=∠BCD1=
1
2
∠ACB,
∴∠CBD1+∠BCD1=
1
2
(∠ABC+∠ACB)=
1
2
×128°=64°,
∴∠BD1C=180°-
1
2
(∠ABC+∠ACB)=180°-64°=116°,
同理∠BD2C=180°-
3
4
(∠ABC+∠ACB)=180°-96°=84°,
依此类推,∠BD5C=180°-
31
32
(∠ABC+∠ACB)=180°-124°=56°.
故答案为:56°;

(2)由(1)可得:∠BD3C=180°-
7
8
(∠ABC+∠ACB)=180°-
7
8
(180°-∠A)=n°.
解得:∠A=
8n-180°
7

故答案为:
8n-180°
7

据专家权威分析,试题“如图,(1)在△ABC中,∠A=52°,∠ABC与∠ACB的角平分线交于D1,∠ABD1..”主要考查你对  三角形的内角和定理  等考点的理解。关于这些考点的“档案”如下:

三角形的内角和定理

考点名称:三角形的内角和定理

  • 三角形的内角和定理及推论:
    三角形的内角和定理:三角形三个内角和等于180°。
    推论:
    (1)直角三角形的两个锐角互余。
    (2)三角形的一个外角等于和它不相邻的来两个内角的和。
    (3)三角形的一个外角大于任何一个和它不相邻的内角。
    注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐