已知△ABC中,∠ACB=90°,CD⊥AB垂足为D,∠BCD=35°.(1)求∠B的度数;(2)探索∠BCD与∠A的关系,并说明理由.-数学

题文

已知△ABC中,∠ACB=90°,CD⊥AB垂足为D,∠BCD=35°.
(1)求∠B的度数;
(2)探索∠BCD与∠A的关系,并说明理由.
题型:解答题  难度:中档

答案

(1)∵CD⊥AB垂足为D,
∴∠CDB=90°,
∵∠BCD=35°,
∴∠B=90°-35°=55°;

(2)∠BCD=∠A,理由如下:
∵∠ACB=90°,
∴∠B+∠A=90°,
∵CD⊥AB垂足为D,
∴∠CDB=90°,
∴∠B+∠BCD=90°,
∴∠A=∠BCD.

据专家权威分析,试题“已知△ABC中,∠ACB=90°,CD⊥AB垂足为D,∠BCD=35°.(1)求∠B的度数;..”主要考查你对  三角形的内角和定理  等考点的理解。关于这些考点的“档案”如下:

三角形的内角和定理

考点名称:三角形的内角和定理

  • 三角形的内角和定理及推论:
    三角形的内角和定理:三角形三个内角和等于180°。
    推论:
    (1)直角三角形的两个锐角互余。
    (2)三角形的一个外角等于和它不相邻的来两个内角的和。
    (3)三角形的一个外角大于任何一个和它不相邻的内角。
    注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐