如图的双曲线是函数y=-2x(x<0)和y=4x(x>0)的图象,若点M是y轴正半轴上任意一点,过点M作PQ∥x轴交图象于点P,Q,连接OP,OQ,则以下结论:①△OPQ的面积为定值;②x>0时,y随x的增-数学
题文
如图的双曲线是函数y=-
①△OPQ的面积为定值; ②x>0时,y随x的增大而增大; ③MQ=2PM; ④x<0时,y随x的增大而增大. 其中的正确结论是( )
|
答案
①∵PQ∥x轴, ∴PQ⊥y轴, ∵点P与Q分别在函数y=-
∴S△OPM=1,S△OMQ=2, ∴S△OPQ=S△OPM+S△OMQ=3;故正确; ②x>0时,y随x的增大而减小,故错误; ③∵S△OPM=
∴PM:MQ=1:2, 即MQ=2PM,故正确; ④x<0时,y随x的增大而增大.故正确. 故选D. |
据专家权威分析,试题“如图的双曲线是函数y=-2x(x<0)和y=4x(x>0)的图象,若点M是y轴正半..”主要考查你对 求反比例函数的解析式及反比例函数的应用 等考点的理解。关于这些考点的“档案”如下:
求反比例函数的解析式及反比例函数的应用
考点名称:求反比例函数的解析式及反比例函数的应用
反比例函数解析式的确定方法:
由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。反比例函数的应用:
建立函数模型,解决实际问题。- 用待定系数法求反比例函数关系式的一般步骤是:
①设所求的反比例函数为:y= (k≠0);
②根据已知条件(自变量与函数的对应值)列出含k的方程;
③由代人法解待定系数k的值;
④把k值代人函数关系式y= 中。
反比例函数应用一般步骤:
①审题;
②求出反比例函数的关系式;
③求出问题的答案,作答。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:如图,△AOB为等边三角形,点B的坐标为(-2,0),过点C(2,0)作直线l交AO于点D,交AB于E,点E在反比例函数y=kx(x<0)的图象上,若△ADE和△DCO(即图中两阴影部分)的面积相等,则k-数学
下一篇:如图,反比例函数y=kx(x<0)的图象上到原点O的距离最小的点为A,连OA,将线段OA平移到线段CD,点O的对应点C(1,2)且点D也在反比例函数y=kx(x<0)的图象上时,则k的值为()A.-2B-数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |