如图,正方形ABCD的边AB在x轴的正半轴上,C(2,1),D(1,1).反比例函数y=kx的图象与边BC交于点E,与边CD交于点F.已知BE:CE=3:1,则DF:FC等于()A.4:1B.3:1C.2:1D.1:1-数学

题文

如图,正方形ABCD的边AB在x轴的正半轴上,C(2,1),D(1,1).反比例函数y=
k
x
的图象与边BC交于点E,与边CD交于点F.已知BE:CE=3:1,则DF:FC等于(  )
A.4:1B.3:1C.2:1D.1:1

题型:单选题  难度:中档

答案

∵四边形ABCD为正方形,且C(2,1),D(1,1),
∴A(1,0),B(2,0),BC=DC=1,
∵BE:CE=3:1,
∴BE=
3
4

∴E点坐标为(2,
3
4
),
把E点坐标为(2,
3
4
)代入反比例函数y=
k
x

∴k=2×
3
4
=
3
2

又∵F点的纵坐标为1,且F点在反比例函数y=
k
x

∴F点的横坐标为
3
2

∴DF=
1
2
,CF=1-
1
2
=
1
2

∴DF:CF=1:1.
故选D.

据专家权威分析,试题“如图,正方形ABCD的边AB在x轴的正半轴上,C(2,1),D(1,1).反比..”主要考查你对  求反比例函数的解析式及反比例函数的应用  等考点的理解。关于这些考点的“档案”如下:

求反比例函数的解析式及反比例函数的应用

考点名称:求反比例函数的解析式及反比例函数的应用

  • 反比例函数解析式的确定方法:
    由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。

    反比例函数的应用:
    建立函数模型,解决实际问题。

  • 用待定系数法求反比例函数关系式的一般步骤是:
    ①设所求的反比例函数为:y= (k≠0);
    ②根据已知条件(自变量与函数的对应值)列出含k的方程;
    ③由代人法解待定系数k的值;
    ④把k值代人函数关系式y= 中。

    反比例函数应用一般步骤:
    ①审题;
    ②求出反比例函数的关系式;
    ③求出问题的答案,作答。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐