如图,P为x轴正半轴上一点,过点P作x轴的垂线,交函数y=1x(x>0)的图象于点A,交函数y=4x(x>0)的图象于点B,过点B作x轴的平行线,交y=1x(x>0)于点C,连接AC.(1)当点P的坐标为-数学
题文
如图,P为x轴正半轴上一点,过点P作x轴的垂线,交函数y=
(1)当点P的坐标为(2,0)时,求△ABC的面积; (2)当点P的坐标为(t,0)时,△ABC的面积是否随t值的变化而变化? |
答案
(1)根据题意,得点A、B的横坐标和点P的横坐标相等,即为2. ∵点A在函数y=
∴A点纵坐标是
∵点B在函数y=
∴B点的纵坐标是2. ∴点C的纵坐标是2, ∵点C在函数y=
∴C点横坐标是
∴AB=
∴△ABC的面积是:
(2)根据(1)中的思路,可以分别求得点A(t,
∴AB=
∴△ABC的面积是
∴△ABC的面积不会随着t的变化而变化. |
据专家权威分析,试题“如图,P为x轴正半轴上一点,过点P作x轴的垂线,交函数y=1x(x>0)的..”主要考查你对 求反比例函数的解析式及反比例函数的应用 等考点的理解。关于这些考点的“档案”如下:
求反比例函数的解析式及反比例函数的应用
考点名称:求反比例函数的解析式及反比例函数的应用
反比例函数解析式的确定方法:
由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。反比例函数的应用:
建立函数模型,解决实际问题。- 用待定系数法求反比例函数关系式的一般步骤是:
①设所求的反比例函数为:y= (k≠0);
②根据已知条件(自变量与函数的对应值)列出含k的方程;
③由代人法解待定系数k的值;
④把k值代人函数关系式y= 中。
反比例函数应用一般步骤:
①审题;
②求出反比例函数的关系式;
③求出问题的答案,作答。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:如图,已知第一象限内的点A在反比例函数y=2x的图象上,第二象限内的点B在反比例函数y=kx的图象上,且OA⊥OB,tanA=3,则k的值为()A.-3B.-3C.-6D.-23-数学
下一篇:如图,直线l1:x=1,l2:x=2,l3:x=3,l4:x=4,…,与函数y=2x(x>0)的图象分别交于点A1、A2、A3、A4、…;与函数y=5x(x>0)的图象分别交于点B1、B2、B3、B4、….如果四边形A1A2B2B-数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |