如图,点A是双曲线y=4x在第一象限上的一动点,连接AO并延长交另一分支于点B,以AB为斜边作等腰Rt△ABC,点C在第二象限,随着点A的运动,点C的位置也不断的变化,但始终在一函-数学
题文
如图,点A是双曲线y=
|
答案
连结OC,作CD⊥x轴于D,AE⊥x轴于E,如图, 设A点坐标为(a,
∵A点、B点是正比例函数图象与双曲线y=
∴点A与点B关于原点对称, ∴OA=OB ∵△ABC为等腰直角三角形, ∴OC=OA,OC⊥OA, ∴∠DOC+∠AOE=90°, ∵∠DOC+∠DCO=90°, ∴∠DCO=∠AOE, ∵在△COD和△OAE中
∴△COD≌△OAE(AAS), ∴OD=AE=
∴C点坐标为(-
∵-
∴点C在反比例函数y=-
故答案为y=-
|
据专家权威分析,试题“如图,点A是双曲线y=4x在第一象限上的一动点,连接AO并延长交另一..”主要考查你对 求反比例函数的解析式及反比例函数的应用 等考点的理解。关于这些考点的“档案”如下:
求反比例函数的解析式及反比例函数的应用
考点名称:求反比例函数的解析式及反比例函数的应用
反比例函数解析式的确定方法:
由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。反比例函数的应用:
建立函数模型,解决实际问题。- 用待定系数法求反比例函数关系式的一般步骤是:
①设所求的反比例函数为:y= (k≠0);
②根据已知条件(自变量与函数的对应值)列出含k的方程;
③由代人法解待定系数k的值;
④把k值代人函数关系式y= 中。
反比例函数应用一般步骤:
①审题;
②求出反比例函数的关系式;
③求出问题的答案,作答。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:如图,已知△ABO的顶点A和AB边的中点C都在双曲线y=4x(x>0)的一个分支上,点B在x轴上,CD⊥OB于D,则△AOC的面积为()A.2B.3C.4D.32-数学
下一篇:已知矩形ABCD面积是8,长为y,宽为x.则y关于x的函数图象大致是()A.B.C.D.-数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |