如图,直线y=x+b(b≠0)交坐标轴于A、B两点,交双曲线y=2x于点D,过D作两坐标轴的垂线DC、DE,连接OD.(1)求证:AD平分∠CDE;(2)对任意的实数b(b≠0),求证:AD?BD为定值;(3)是否-数学

题文

如图,直线y=x+b(b≠0)交坐标轴于A、B两点,交双曲线y=
2
x
于点D,过D作两坐标轴的垂线DC、DE,连接OD.
(1)求证:AD平分∠CDE;
(2)对任意的实数b(b≠0),求证:AD?BD为定值;
(3)是否存在直线AB,使得四边形OBCD为平行四边形?若存在,求出直线的解析式;若不存在,请说明理由.
题型:解答题  难度:中档

答案

(1)证明:由y=x+b得A(-b,0),B(0,b).
∴∠DAC=∠OAB=45°
又∵DC⊥x轴,DE⊥y轴
∴∠ACD=∠CDE=90°
∴∠ADC=45°即AD平分∠CDE.

(2)证明:∵∠ACD=90°,∠ADC=45°,
∴△ACD是等腰直角三角形,
同理可得,△BDE是等腰直角三角形,
∴AD=

2
CD,BD=

2
DE.
∴AD?BD=2CD?DE=2×2=4为定值.

(3)存在直线AB,使得OBCD为平行四边形.
若OBCD为平行四边形,则AO=AC,OB=CD.
由(1)知AO=BO,AC=CD,
设OB=a(a>0),
∴B(0,-a),D(2a,a),
∵D在y=
2
x
上,
∴2a?a=2,
∴a1=-1(舍去),a2=1,
∴B(0,-1).
又∵B在y=x+b上,
∴b=-1.
即存在直线:y=x-1,使得四边形OBCD为平行四边形.

据专家权威分析,试题“如图,直线y=x+b(b≠0)交坐标轴于A、B两点,交双曲线y=2x于点D,过..”主要考查你对  求反比例函数的解析式及反比例函数的应用  等考点的理解。关于这些考点的“档案”如下:

求反比例函数的解析式及反比例函数的应用

考点名称:求反比例函数的解析式及反比例函数的应用

  • 反比例函数解析式的确定方法:
    由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。

    反比例函数的应用:
    建立函数模型,解决实际问题。

  • 用待定系数法求反比例函数关系式的一般步骤是:
    ①设所求的反比例函数为:y= (k≠0);
    ②根据已知条件(自变量与函数的对应值)列出含k的方程;
    ③由代人法解待定系数k的值;
    ④把k值代人函数关系式y= 中。

    反比例函数应用一般步骤:
    ①审题;
    ②求出反比例函数的关系式;
    ③求出问题的答案,作答。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐