如图,已知直线y=mx+n交x轴于A,交y轴于b,且∠BAO=30°,P为y=kx上一点,PE⊥y轴于E,PF⊥x轴于F,分别交AB于M,N,若AM?BN=43,则k=______.-数学

题文

如图,已知直线y=mx+n交x轴于A,交y轴于b,且∠BAO=30°,P为y=
k
x
上一点,PE⊥y轴于E,PF⊥x轴于F,分别交AB于M,N,若AM?BN=
4
3
,则k=______.
题型:填空题  难度:中档

答案

过M作MQ⊥x轴,过N作ND⊥y轴,
可得:四边形MQFP与四边形PEDN为矩形,
设P(a,b),
∴MQ=PF=b,DN=PE=a,
在Rt△AMQ中,∠BAO=30°,
∴MQ=PF=
1
2
AM,即AM=2PF=2b,
在Rt△BDN中,∠OBA=60°,
∴sin60°=
DN
BN
=
PE
BN
=

3
2

∴BN=
2

3
3
PE=
2

3
3
a,
又AM?BN=
4
3

∴2PF?
2

3
3
PE=
4
3
,即PE?PF=ab=

3
3

则k=ab=

3
3

故答案为:

3
3

据专家权威分析,试题“如图,已知直线y=mx+n交x轴于A,交y轴于b,且∠BAO=30°,P为y=kx上..”主要考查你对  求反比例函数的解析式及反比例函数的应用  等考点的理解。关于这些考点的“档案”如下:

求反比例函数的解析式及反比例函数的应用

考点名称:求反比例函数的解析式及反比例函数的应用

  • 反比例函数解析式的确定方法:
    由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。

    反比例函数的应用:
    建立函数模型,解决实际问题。

  • 用待定系数法求反比例函数关系式的一般步骤是:
    ①设所求的反比例函数为:y= (k≠0);
    ②根据已知条件(自变量与函数的对应值)列出含k的方程;
    ③由代人法解待定系数k的值;
    ④把k值代人函数关系式y= 中。

    反比例函数应用一般步骤:
    ①审题;
    ②求出反比例函数的关系式;
    ③求出问题的答案,作答。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐