如图所示,在直角坐标系中,点A是反比例函数y1=kx(x>0)的图象上一点,AB⊥x轴的正半轴于B点,C是OB的中点;一次函数y2=ax+b的图象经过A、C两点,并交y轴于点D(0,-2),若S△AO-数学

题文

如图所示,在直角坐标系中,点A是反比例函数y1=
k
x
(x>0)的图象上一点,AB⊥x轴的正半轴于B点,C是OB的中点;一次函数y2=ax+b的图象经过A、C两点,并交y轴于点D(0,-2),若S△AOD=4.
(1)求反比例函数和一次函数的解析式;
(2)观察图象,请指出,当y1≥y2时,x的取值范围.
题型:解答题  难度:中档

答案

(1)作AE⊥y轴于E,
∵S△AOD=4,OD=2,
1
2
OD?AE=4,
∴AE=4,
∵AB⊥OB,C为OB的中点,
∴∠DOC=∠ABC=90°,OC=BC,∠OCD=∠BCA,
∴Rt△DOC≌Rt△ABC,
∴AB=OD=2,
∴A(4,2),
将A(4,2)代入y1=
k
x
中,得k=8,
∴反比例函数的解析式为:y1=
8
x

将A(4,2)和D(0,-2)代入y2=ax+b,

4a+b=2
b=-2

解得:

a=1
b=-2

∴一次函数的解析式为:y2=x-2;

(2)根据图象只有在y轴的右侧的情况:
此时当y1≥y2时,0<x≤4.

据专家权威分析,试题“如图所示,在直角坐标系中,点A是反比例函数y1=kx(x>0)的图象上一..”主要考查你对  求反比例函数的解析式及反比例函数的应用  等考点的理解。关于这些考点的“档案”如下:

求反比例函数的解析式及反比例函数的应用

考点名称:求反比例函数的解析式及反比例函数的应用

  • 反比例函数解析式的确定方法:
    由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。

    反比例函数的应用:
    建立函数模型,解决实际问题。

  • 用待定系数法求反比例函数关系式的一般步骤是:
    ①设所求的反比例函数为:y= (k≠0);
    ②根据已知条件(自变量与函数的对应值)列出含k的方程;
    ③由代人法解待定系数k的值;
    ④把k值代人函数关系式y= 中。

    反比例函数应用一般步骤:
    ①审题;
    ②求出反比例函数的关系式;
    ③求出问题的答案,作答。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐