如图,一次函数y=ax+b的图象与反比例函数y=kx的图象交于C,D两点,与坐标轴交于A、B两点,连结OC,OD(O是坐标原点).(1)利用图中条件,求反比例函数的解析式和m的值;(2)利用-数学
题文
如图,一次函数y=ax+b的图象与反比例函数y=
(1)利用图中条件,求反比例函数的解析式和m的值; (2)利用图中条件,求出一次函数的解析式; (3)如图,写出当x取何值时,一次函数值小于反比例函数值? (4)坐标平面内是否存在点P,使以O、D、P、C为顶点的四边形是平行四边形?若存在,直接写出P点的坐标;若不存在,说明理由. |
答案
(1)∵一次函数y=ax+b的图象与反比例函数y=
∴k=xy=1×4=4, ∴反比例函数的解析式为:y=
当x=4时,m=y=
∴m=1; (2)∵C(1,4),D(4,1), ∴
解得:
∴一次函数的解析式为:y=-x+5; (3)结合图象的可得:当0<x<1或x>4是,一次函数值小于反比例函数值; (4)存在. 如图,∵点C的坐标为:(1,4),点D的坐标为;(4,1), ∴直线OC的解析式为:y=4x,直线OD的解析式为:y=
∵使以O、D、P、C为顶点的四边形是平行四边形, ∴直线P1P2的解析式为:y=-x①,直线P1P3的解析式为:y=4x-15②,直线P2P3的解析式为:y=
联立①②得:
∴P1(3,-3);P2(-3,3);P3(5,5). |
据专家权威分析,试题“如图,一次函数y=ax+b的图象与反比例函数y=kx的图象交于C,D两点..”主要考查你对 求反比例函数的解析式及反比例函数的应用 等考点的理解。关于这些考点的“档案”如下:
求反比例函数的解析式及反比例函数的应用
考点名称:求反比例函数的解析式及反比例函数的应用
反比例函数解析式的确定方法:
由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。反比例函数的应用:
建立函数模型,解决实际问题。- 用待定系数法求反比例函数关系式的一般步骤是:
①设所求的反比例函数为:y= (k≠0);
②根据已知条件(自变量与函数的对应值)列出含k的方程;
③由代人法解待定系数k的值;
④把k值代人函数关系式y= 中。
反比例函数应用一般步骤:
①审题;
②求出反比例函数的关系式;
③求出问题的答案,作答。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:在平面直角坐标系中,点A(-3,4)关于y轴的对称点为点B,连接AB,反比例函数y=kx(x>0)的图象经过点B,过点B作BC⊥x轴于点C,点P是该反比例函数图象上任意一点,过点P作PD⊥x轴于-数学
下一篇:在一个可以改变体积的密闭容器内,装有一定质量的二氧化碳.当改变容器的体积时,气体的密度也会随之改变,密度ρ是体积V的反比例函数,它的图象如图所示.(1)求密度ρ(单位:㎏/m-数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |