在平面直角坐标系中,点A(-3,4)关于y轴的对称点为点B,连接AB,反比例函数y=kx(x>0)的图象经过点B,过点B作BC⊥x轴于点C,点P是该反比例函数图象上任意一点,过点P作PD⊥x轴于-数学
题文
在平面直角坐标系中,点A(-3,4)关于y轴的对称点为点B,连接AB,反比例函数y=
(1)求k的值; (2)判断△QOC与△POD的面积是否相等,并说明理由. |
答案
(1)∵点B与点A关于y轴对称,A(-3,4), ∴点B的坐标为(3,4), ∵反比例函数y=
∴
解得k=12. (2)相等.理由如下: 设点P的坐标为(m,n),其中m>0,n>0, ∵点P在反比例函数y=
∴n=
∴S△POD=
∵A(-3,4),B(3,4), ∴AB∥x轴,OC=3,BC=4, ∵点Q在线段AB上, ∴S△QOC=
∴S△QOC=S△POD. |
据专家权威分析,试题“在平面直角坐标系中,点A(-3,4)关于y轴的对称点为点B,连接AB,..”主要考查你对 求反比例函数的解析式及反比例函数的应用 等考点的理解。关于这些考点的“档案”如下:
求反比例函数的解析式及反比例函数的应用
考点名称:求反比例函数的解析式及反比例函数的应用
反比例函数解析式的确定方法:
由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。反比例函数的应用:
建立函数模型,解决实际问题。- 用待定系数法求反比例函数关系式的一般步骤是:
①设所求的反比例函数为:y= (k≠0);
②根据已知条件(自变量与函数的对应值)列出含k的方程;
③由代人法解待定系数k的值;
④把k值代人函数关系式y= 中。
反比例函数应用一般步骤:
①审题;
②求出反比例函数的关系式;
③求出问题的答案,作答。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:如图,已知反比例函数y=k2x和一次函数y=2x-1图象交于A(1,b)点,且一次函数的图象经过(2,b+k)点.(1)求A点坐标及反比例函数的解析式;(2)请问:在x轴上是否存在点P,使△AOP为-数学
下一篇:如图,一次函数y=ax+b的图象与反比例函数y=kx的图象交于C,D两点,与坐标轴交于A、B两点,连结OC,OD(O是坐标原点).(1)利用图中条件,求反比例函数的解析式和m的值;(2)利用-数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |