如图,已知C、D是双曲线,y=mx在第一象限内的分支上的两点,直线CD分别交x轴、y轴于A、B两点,设C、D的坐标分别是(x1,y1)、(x2,y2),连接OC、OD.(1)求证:y1<OC<y1+my1;(2-数学

题文

如图,已知C、D是双曲线,y=
m
x
在第一象限内的分支上的两点,直线CD分别交x轴、y轴于A、B两点,设C、D的坐标分别是(x1,y1)、(x2,y2),连接OC、OD.
(1)求证:y1<OC<y1+
m
y1

(2)若∠BOC=∠AOD=a,tana=
1
3
,OC=

10
,求直线CD的解析式;
(3)在(2)的条件下,双曲线上是否存在一点P,使得S△POC=S△POD?若存在,请给出证明;若不存在,请说明理由.
题型:解答题  难度:中档

答案

(1)证明:过点C作CG⊥x轴,垂足为G,则CG=y1,OG=x1.(1分)
∵点C(x1,y1)在双曲线y=
m
x
上,
∴x1=
m
y1

∵在Rt△OCG中,CG<OC<CG+OG,∴y1<OC<y1+
m
y1
(3分)

(2)在Rt△GCO中,∠GCO=∠BOC=α,
tana=
OG
CG
=
1
3
,即
x1
y1
=
1
3
,y1=3x1
∵OC2=OG2+CG2,OC=

10

∴10=x12+y12,即10=x12+(3x12
解之,得x1=±1.∵负值不合题意,∴x1=1,y1=3.∴点C的坐标为(1,3).(4分)
∵点C在双曲线y=
m
x
上,
∴3=
m
1
,即m=3
∴双曲线的解析式为y=
3
x
(5分)
过点D作DH⊥x轴,垂足为H.则DH=y2,OH=x2
在Rt△ODH中,tana=
DH
OH
=
y2
x2
=
1
3
,即x2=3y2
又y2=
3
x2
,则3y22=3.
解之,得y2=±1.
∵负值不合题意,∴y2=1,x2=3
∴点D的坐标为(3,1)(6分)
设直线CD的解析式为y=kx+b.
则有

3=k+b
1=3k+b
,解得

k=-1
b=4

∴直线CD的解析式为y=-x+4.(7分)

(3)双曲线y=
3
x
上存在点P,使得S△POC=S△POD,这个点P就是
∠COD的平分线与双曲线y=
3
x
的交点(8分)
证明如下:
∵点P在∠COD的平分线上.
∴点P到OC、OD的距离相等.
又OD=

OH2+DH2
=

x22+y22
=

10
=OC
∴S△POD=S△POC.(10分)

据专家权威分析,试题“如图,已知C、D是双曲线,y=mx在第一象限内的分支上的两点,直线..”主要考查你对  求反比例函数的解析式及反比例函数的应用  等考点的理解。关于这些考点的“档案”如下:

求反比例函数的解析式及反比例函数的应用

考点名称:求反比例函数的解析式及反比例函数的应用

  • 反比例函数解析式的确定方法:
    由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。

    反比例函数的应用:
    建立函数模型,解决实际问题。

  • 用待定系数法求反比例函数关系式的一般步骤是:
    ①设所求的反比例函数为:y= (k≠0);
    ②根据已知条件(自变量与函数的对应值)列出含k的方程;
    ③由代人法解待定系数k的值;
    ④把k值代人函数关系式y= 中。

    反比例函数应用一般步骤:
    ①审题;
    ②求出反比例函数的关系式;
    ③求出问题的答案,作答。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐