如图,双曲线y=-2x(x<0)经过四边形OABC的顶点A、C,∠ABC=90°,OC平分OA与x轴负半轴的夹角,AB∥x轴,将△ABC沿AC翻折后得到△AB′C,B′点落在OA上,则四边形OABC的面积是______.-数学
题文
如图,双曲线y=-
|
答案
设BC的延长线交x轴于点D, 设点C(-m,n),AB=a, ∵∠ABC=90°,AB∥x轴, ∴CD⊥x轴, 由折叠的性质可得:∠AB′C=∠ABC=90°, ∴CB′⊥OA, ∵OC平分OA与x轴负半轴的夹角, ∴CD=CB′, 在Rt△OB′C和Rt△ODC中, ∵
∴Rt△OCD≌Rt△OCB′(HL), 再由翻折的性质得,BC=B′C, ∴BC=CD, ∴点B(-m,2n), ∵双曲线y=-
∴S△OCD=
∴S△OCB′=S△OCD=1, ∵AB∥x轴, ∴点A(a-m,2n), ∴2n(a-m)=-2, ∴an-mn=-1, ∵mn=2 ∴an=1, ∴S△ABC=
∴S四边形OABC=S△OCB′+S△ABC+S△ABC=1+
故答案为:2. |
据专家权威分析,试题“如图,双曲线y=-2x(x<0)经过四边形OABC的顶点A、C,∠ABC=90°,OC..”主要考查你对 求反比例函数的解析式及反比例函数的应用 等考点的理解。关于这些考点的“档案”如下:
求反比例函数的解析式及反比例函数的应用
考点名称:求反比例函数的解析式及反比例函数的应用
反比例函数解析式的确定方法:
由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。反比例函数的应用:
建立函数模型,解决实际问题。- 用待定系数法求反比例函数关系式的一般步骤是:
①设所求的反比例函数为:y= (k≠0);
②根据已知条件(自变量与函数的对应值)列出含k的方程;
③由代人法解待定系数k的值;
④把k值代人函数关系式y= 中。
反比例函数应用一般步骤:
①审题;
②求出反比例函数的关系式;
③求出问题的答案,作答。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:若反比例函数y=k-4x的图象在每个象限内y随x的增大而减小,则k的值可以为______(只需写出一个符合条件的k值即可).-数学
下一篇:如图,正方形OABC,ADEF的顶点A,D,C在坐标轴上,点F在AB上,点B,E在函数y=1x(x>0)的图象上,则点E的横坐标是______.-数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |