如图,已知点P是反比例函数y=k1x(k1<0,x<0)图象上一点,过点P作x轴、y轴的垂线,分别交x轴、y轴于A、B两点,交反比例函数y=k2x(0<k2<|k1|)图象于E、F两点.(1)用含k1、k2的式-数学

题文

如图,已知点P是反比例函数y=
k1
x
(k1<0,x<0)图象上一点,过点P作x轴、y轴的垂线,分别交x轴、y轴于A、B两点,交反比例函数y=
k2
x
(0<k2<|k1|)图象于E、F两点.
(1)用含k1、k2的式子表示以下图形面积:
①四边形PAOB;②三角形OFB;③四边形PEOF;
(2)若P点坐标为(-4,3),且PB:BF=2:1,分别求出k1、k2的值.
题型:解答题  难度:中档

答案


(1)①S四边形PAOB=|OA|?|OB|=|k1|;
②S三角形OFB=
1
2
|BF|?|OB|=
1
2
k2;
③S四边形PEOF=S四边形PAOB+S三角形OFB+S△EAO=k2-k1(或k2+|k1|);

(2)因为P(-4,3)在y=
k1
x
上,
∴k1=-12;(2分)
又PB:BF=2:1,
∴F(2,3),k2=6(2分)

据专家权威分析,试题“如图,已知点P是反比例函数y=k1x(k1<0,x<0)图象上一点,过点P作..”主要考查你对  求反比例函数的解析式及反比例函数的应用  等考点的理解。关于这些考点的“档案”如下:

求反比例函数的解析式及反比例函数的应用

考点名称:求反比例函数的解析式及反比例函数的应用

  • 反比例函数解析式的确定方法:
    由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。

    反比例函数的应用:
    建立函数模型,解决实际问题。

  • 用待定系数法求反比例函数关系式的一般步骤是:
    ①设所求的反比例函数为:y= (k≠0);
    ②根据已知条件(自变量与函数的对应值)列出含k的方程;
    ③由代人法解待定系数k的值;
    ④把k值代人函数关系式y= 中。

    反比例函数应用一般步骤:
    ①审题;
    ②求出反比例函数的关系式;
    ③求出问题的答案,作答。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐