如图,BD⊥AC于D点,FG⊥AC于G点,∠CBE+∠BED=180°.⑴求证:FG∥BD;⑵求证:∠CFG=∠BDE.-八年级数学
题文
如图,BD⊥AC于D点,FG⊥AC于G点,∠CBE+∠BED=180°. ⑴求证:FG∥BD; ⑵求证:∠CFG=∠BDE. |
答案
⑴可证明∠FGD=∠BDA=90°。则FG∥BD(2)可证明∠GFC=∠DBC∠CBD=∠EDB,则∠CFG=∠BDE |
试题分析:(1)依题意知BD⊥AC,FG⊥AC,则∠FGD=∠BDA=90°。则FG∥BD; (2)由(1)知,FG∥BD。∠GFC=∠DBC。又∵∠CBE+∠BED=180°则BC∥DE。 所以∠CBD=∠EDB,则∠CFG=∠BDE 点评:本题难度中等,主要考查学生对平行线性质和判定知识点的掌握。注意数形结合思想,运用到考试中去。 |
据专家权威分析,试题“如图,BD⊥AC于D点,FG⊥AC于G点,∠CBE+∠BED=180°.⑴求证:FG∥BD;⑵求..”主要考查你对 点、线、面、体 等考点的理解。关于这些考点的“档案”如下:
点、线、面、体
考点名称:点、线、面、体
- 点动成线,线动成面,面动成体:
长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体,几何体也简称体。
包围着体的是面,面有平的面和曲的面两种。
夜晚流星划过天空时留下一道明亮的光线,节日的焰火画出的曲线组成优美的图案,这些都给我们以线的形象,面和面相交的地方形成线。
天上的星星、世界地图上的城市等都给我们以点的形象,线和线相交的地方是点。
几何图形都是由点、线、面、体组成的,点是构成图形的基本元素。 - 常见几何体的三视图:
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:如果∠A=55°,那么∠A的余角等于°.-七年级数学
下一篇:如图,AB∥CD,EF交CD于点H,EG⊥AB,垂足为G,已知∠CHE=120°,则∠FEG=_________________。-八年级数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |