如图,在△ABC中,∠ABC,∠ACB的平分线夹角为α,∠ABC的外角平分线与∠ACB的外角平分线的夹角为β,(1)若α=110°,则∠A=______.(2)若∠A=30°,则β=______.(3)猜想并证明α与β之间的关-数学

题文

如图,在△ABC中,∠ABC,∠ACB的平分线夹角为α,∠ABC的外角平分线与∠ACB的外角平分线的夹角为β,
(1)若α=110°,则∠A=______.
(2)若∠A=30°,则β=______.
(3)猜想并证明α与β之间的关系.
题型:解答题  难度:中档

答案

(1)∵α=110°,
∴∠2+∠4=180°-110°=70°,
∵∠ABC,∠ACB的平分线夹角为α,
∴∠1=∠2,∠3=∠4,
∴∠1+∠2+∠3+∠4=2(∠2+∠4)=2×70°=140°,
∴∠A=180°-2(∠2+∠4)=180°-140°=40°.
故答案为:40°.

(2)∵∠A=40°,
∴∠ABC+∠ACB=180°-∠A=180°-40°=140°,
∴∠DBC+∠ECB=360°-(∠ABC+∠ACB)=360°-140°=220°,
∵ABC的外角平分线与∠ACB的外角平分线的夹角为β,
∴∠6+∠7=
1
2
(∠DBC+∠ECB)=
1
2
×220°=110°,
∴β=180°-(∠6+∠7)=180°-110°=70°.
故答案为:70°.

(3)互补.
证明:如图所示:
∵OB,OC分别是∠ABC与∠ACB的平分线,
∴∠1=∠2,3=∠4,
∴α=180°-(∠2+∠4)=180°-
1
2
(∠ABC+∠ACB)①;
∵BP,CP是△ABC的外角平分线,
∴∠6+∠7=
1
2
[360°-(∠ABC+∠ACB)]=180°-
1
2
(∠ABC+∠ACB),
∴β=180°-(∠6+∠7)=180°-180°+
1
2
(∠ABC+∠ACB)=
1
2
(∠ABC+∠ACB)②,
①+②得,α+β=180°,
∴α与β互补.

据专家权威分析,试题“如图,在△ABC中,∠ABC,∠ACB的平分线夹角为α,∠ABC的外角平分线与..”主要考查你对  三角形的内角和定理  等考点的理解。关于这些考点的“档案”如下:

三角形的内角和定理

考点名称:三角形的内角和定理

  • 三角形的内角和定理及推论:
    三角形的内角和定理:三角形三个内角和等于180°。
    推论:
    (1)直角三角形的两个锐角互余。
    (2)三角形的一个外角等于和它不相邻的来两个内角的和。
    (3)三角形的一个外角大于任何一个和它不相邻的内角。
    注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐