探究性问题:11×2=11-12,12×3=12-13,13×4=13-14,则1n(n+1)=______.试用上面规律,计算1(x+1)(x+2)+1(x+2)(x+3)+1(x+3)(x+4).-数学

首页 > 考试 > 数学 > 初中数学 > 分式的加减/2019-04-08 / 加入收藏 / 阅读 [打印]

题文

探究性问题:
1
1×2
=
1
1
-
1
2
1
2×3
=
1
2
-
1
3
1
3×4
=
1
3
-
1
4
,则
1
n(n+1)
=______.
试用上面规律,计算
1
(x+1)(x+2)
+
1
(x+2)(x+3)
+
1
(x+3)(x+4)
题型:解答题  难度:中档

答案

1
1×2
=
1
1
-
1
2
1
2×3
=
1
2
-
1
3
1
3×4
=
1
3
-
1
4

1
n(n+1)
=
1
n
-
1
n+1

∴原式=
1
x+1
-
1
x+2
+
1
x+2
-
1
x+3
+
1
x+3
-
1
x+4

=
1
x+1
-
1
x+4

=
3
(x+1)(x+4)

故答案为:
1
n
-
1
n+1

据专家权威分析,试题“探究性问题:11×2=11-12,12×3=12-13,13×4=13-14,则1n(n+1)=___..”主要考查你对  分式的加减  等考点的理解。关于这些考点的“档案”如下:

分式的加减

考点名称:分式的加减

  • 分式的加减法则:
    同分母的分式相加减,分母不变,把分子相加减;
    异分母的分式相加减,先通分,变为同分母分式,然后再加减。
    用式子表示为:

  • 分式的加减要求:
    ①分式的加减运算结果必须是最简分式或整式,运算中要适时地约分;
    ②如果一个分式与一个整式相加减,那么可以把整式看成是分母为1的分式,先通分,再进行加减。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐