如图,在直角坐标系中,O为原点,A(4,12)为双曲线y=kx(x>0)上的一点.(1)求k的值;(2)过双曲线上的点P作PB⊥x轴于B,连接OP,若Rt△OPB两直角边的比值为14,试求点P的坐标;(3-数学
题文
如图,在直角坐标系中,O为原点,A(4,12)为双曲线y=
(1)求k的值; (2)过双曲线上的点P作PB⊥x轴于B,连接OP,若Rt△OPB两直角边的比值为
(3)分别过双曲线上的两点P1、P2,作P1B1⊥x轴于B1,P2B2⊥x轴于B2,连接OP1、OP2.设Rt△OP1B1、Rt△OP2B2的周长分别为l1、l2,内切圆的半径分别为r1、r2,若
|
答案
(1)将A(4,12)代入双曲线y=
(2)由(1)得双曲线解析式为y=
设P(m,n),∴n=
当
∴z?4z=48,解得z=2
∴m=2
∴P(2
当
(3)在Rt△OP1B1中,设OB1=a1,P1B1=b1,OP1=c1, 则P1(a1,b1),由(2)得a1b1=48, 在Rt△OP2B2中,设OB2=a2,P2B2=b2,OP2=c2, 则P2(a2,b2),由(2)得a2b2=48, ∵
∴(a1+b1+c1)?r1=(a2+b2+c2)?r2(11分) 即l1?r1=l2?r2,故
又∵
|
据专家权威分析,试题“如图,在直角坐标系中,O为原点,A(4,12)为双曲线y=kx(x>0)上的..”主要考查你对 求反比例函数的解析式及反比例函数的应用 等考点的理解。关于这些考点的“档案”如下:
求反比例函数的解析式及反比例函数的应用
考点名称:求反比例函数的解析式及反比例函数的应用
反比例函数解析式的确定方法:
由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。反比例函数的应用:
建立函数模型,解决实际问题。- 用待定系数法求反比例函数关系式的一般步骤是:
①设所求的反比例函数为:y= (k≠0);
②根据已知条件(自变量与函数的对应值)列出含k的方程;
③由代人法解待定系数k的值;
④把k值代人函数关系式y= 中。
反比例函数应用一般步骤:
①审题;
②求出反比例函数的关系式;
③求出问题的答案,作答。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:某学校锅炉房建有一个储煤库,开学初购进一批煤,按每天用煤0.6吨计算,一学期(按150天计)刚好用完,若每天的耗煤量为x(吨),那么这批煤能维持y(天).(1)求y与x之间的函数关-数学
下一篇:蓄电池电压为定值,使用此电源时,电流I(A)与电阻R(Ω)之间关系图象如图所示,若点A在图象上,解答下列问题.(1)电流I随着电阻R的增加是如何变化的?(2)电流I可以看成电阻R的什-数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |