如图,过点P(-4,3)作x轴,y轴的垂线,分别交x轴,y轴于A、B两点,交双曲线y=kx(k≥2)于E、F两点.(1)点E的坐标是______,点F的坐标是______;(均用含k的式子表示)(2)判断EF与-数学
题文
如图,过点P(-4,3)作x轴,y轴的垂线,分别交x轴,y轴于A、B两点,交双曲线y=
(1)点E的坐标是______,点F的坐标是______;(均用含k的式子表示) (2)判断EF与AB的位置关系,并证明你的结论; (3)记S=S△PEF-S△OEF,S是否有最小值?若有,求出其最小值;若没有,请你说明理由. |
答案
(1)E(-4,-
(2)结论EF∥AB.理由如下: ∵P(-4,3), ∴E(-4,-
即得PE=3+
在Rt△PAB中,tan∠PAB=
在Rt△PEF中,tan∠PEF=
∴tan∠PAB=tan∠PEF, ∴∠PAB=∠PEF, ∴EF∥AB; (3)S有最小值.理由如下: 分别过点E、F作PF、PE的平行线,交点为P′. 由(2)知P′(
∵四边形PEP′F是矩形, ∴S△P′EF=S△PEF, ∴S=S△PEF-S△OEF =S△P′EF-S△OEF =S△OME+S矩形OMP′N+S△ONF =
=
=
又∵k≥2,此时S的值随k值增大而增大, ∴当k=2时,S最小=
∴S的最小值是
故答案为:(1)(-4,-
|
据专家权威分析,试题“如图,过点P(-4,3)作x轴,y轴的垂线,分别交x轴,y轴于A、B两点..”主要考查你对 求反比例函数的解析式及反比例函数的应用 等考点的理解。关于这些考点的“档案”如下:
求反比例函数的解析式及反比例函数的应用
考点名称:求反比例函数的解析式及反比例函数的应用
反比例函数解析式的确定方法:
由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。反比例函数的应用:
建立函数模型,解决实际问题。- 用待定系数法求反比例函数关系式的一般步骤是:
①设所求的反比例函数为:y= (k≠0);
②根据已知条件(自变量与函数的对应值)列出含k的方程;
③由代人法解待定系数k的值;
④把k值代人函数关系式y= 中。
反比例函数应用一般步骤:
①审题;
②求出反比例函数的关系式;
③求出问题的答案,作答。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:如图,在平面直角坐标系中有Rt△ABC,∠A=90°,AB=AC,A(-2,0)、B(0,1)、C(d,2).(1)求d的值;(2)将△ABC沿x轴的正方向平移,在第一象限内B、C两点的对应点B′、C′正好落在某反-数学
下一篇:如图,在平面直角坐标系中,点A、B分别在x轴和y轴的正半轴上,OA=2,OB=4,P为线段AB的中点,反比例函数y=kx的图象经过P点,Q是该反比例函数图象上异于点P的另一点,经过点Q-数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |