如图,一次函数y=kx+4的图象与反比例函数y=mx的图象交于点P、Q,点P在第一象限.PA⊥x轴于点A,PB⊥y轴于点B.一次函数的图象分别交x轴、y轴于点C、D,且S△PBD=4,OC=OA.(1)求点-数学

题文

如图,一次函数y=kx+4的图象与反比例函数y=
m
x
的图象交于点P、Q,点P在第一象限.PA⊥x轴于点A,PB⊥y轴于点B.一次函数的图象分别交x轴、y轴于点C、D,且S△PBD=4,OC=OA.
(1)求点D的坐标;
(2)求一次函数与反比例函数的解析式;
(3)根据图象写出当x>0时,一次函数的值大于反比例函数的值的x的取值范围.
题型:解答题  难度:中档

答案

(1)在y=kx+4中,当x=0时,y=4.
∴点D的坐标为(0,4);

(2)∵AP∥OD,PA⊥x轴于点A,
∴Rt△PAC∽Rt△DOC,
∵OC=OA,
∴OD:AP=CO:CA=
1
2

∵OD=4,OD:AP=
1
2

∴AP=8,
又∵BD=8-4=4,S△PBD=4,
∴BP=2,
∴P(2,8),
把P(2,8)分别代入y=kx+4与y=
m
x
,可得
2k+4=8,k=2;
8=
m
2
,m=16,
故一次函数解析式为y=2x+4,反比例函数解析式为y=
16
x


(3)∵P(2,8),
∴当x=2时,一次函数的值等于反比例函数的值.
故由图象,得x>2时,一次函数的值大于反比例函数的值.

据专家权威分析,试题“如图,一次函数y=kx+4的图象与反比例函数y=mx的图象交于点P、Q,..”主要考查你对  求反比例函数的解析式及反比例函数的应用  等考点的理解。关于这些考点的“档案”如下:

求反比例函数的解析式及反比例函数的应用

考点名称:求反比例函数的解析式及反比例函数的应用

  • 反比例函数解析式的确定方法:
    由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。

    反比例函数的应用:
    建立函数模型,解决实际问题。

  • 用待定系数法求反比例函数关系式的一般步骤是:
    ①设所求的反比例函数为:y= (k≠0);
    ②根据已知条件(自变量与函数的对应值)列出含k的方程;
    ③由代人法解待定系数k的值;
    ④把k值代人函数关系式y= 中。

    反比例函数应用一般步骤:
    ①审题;
    ②求出反比例函数的关系式;
    ③求出问题的答案,作答。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐