如图,直线y=k和双曲线y=kx相交于点P,过P点作PA0垂直于x轴,垂足为A0,x轴上的点A0,A1,A2的横坐标是连续的整数,过点A1,A2分别作x轴的垂线,与双曲线y=kx(x>0)及直线y=k-数学

题文

如图,直线y=k和双曲线y=
k
x
相交于点P,过P点作PA0垂直于x轴,垂足为A0,x轴上的点A0,A1,A2的横坐标是连续的整数,过点A1,A2别作x轴的垂线,与双曲线y=
k
x
(x>0)及直线y=k分别交于点B1,B2,C1,C2
(1)求A0点坐标;
(2)求
C1B1
A1B1
C2B2
A2B2
的值.
题型:解答题  难度:中档

答案

(1)根据题意可得:

y=k
y=
k
x

解可得

x=1
y=k

∴P(1,k)(2分)
∵点P与点A0的横坐标相同,且点A0在x轴上,
∴A0(1,0)(2分)

(2)由题意,得A1(2,0)、A2(3,0),
∴A1C1=k,A1B1=
k
2

∴C1B1=A1C1-A1B1=
k
2
,(1分)
C1B1
A1B1
=
k
2
k
2
=1;(1分)
同理,可求得A2C2=k,A2B2=
k
3
,C2B2=
2
3
k,(1分)
C2B2
A2B2
=2.(1分)

据专家权威分析,试题“如图,直线y=k和双曲线y=kx相交于点P,过P点作PA0垂直于x轴,垂足..”主要考查你对  求反比例函数的解析式及反比例函数的应用  等考点的理解。关于这些考点的“档案”如下:

求反比例函数的解析式及反比例函数的应用

考点名称:求反比例函数的解析式及反比例函数的应用

  • 反比例函数解析式的确定方法:
    由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。

    反比例函数的应用:
    建立函数模型,解决实际问题。

  • 用待定系数法求反比例函数关系式的一般步骤是:
    ①设所求的反比例函数为:y= (k≠0);
    ②根据已知条件(自变量与函数的对应值)列出含k的方程;
    ③由代人法解待定系数k的值;
    ④把k值代人函数关系式y= 中。

    反比例函数应用一般步骤:
    ①审题;
    ②求出反比例函数的关系式;
    ③求出问题的答案,作答。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐