如图,平面直角坐标系中,⊙O1过原点O,且⊙O1与⊙O2相外切,圆心O1与O2在x轴正半轴上,⊙O1的半径O1P1、⊙O2的半径O2P2都与x轴垂直,且点P1(x1,y1)、P2(x2,y2)在反比例函数y=1-数学

题文

如图,平面直角坐标系中,⊙O1过原点O,且⊙O1与⊙O2相外切,圆心O1与O2在x轴正半轴上,⊙O1的半径O1P1、⊙O2的半径O2P2都与x轴垂直,且点P1(x1,y1)、P2(x2,y2)在反比例函数y=
1
x
(x>0)的图象上,则y1+y2=______.
题型:填空题  难度:中档

答案

∵⊙O1过原点O,⊙O1的半径O1P1
∴O1O=O1P1
∵⊙O1的半径O1P1与x轴垂直,点P1(x1,y1)在反比例函数y=
1
x
(x>0)的图象上,
∴x1=y1,x1y1=±1,
∵x>0,
∴x1=y1=1.
∵⊙O1与⊙O2相外切,⊙O2的半径O2P2与x轴垂直,
∴EO2=O2P2=y2
OO2=2+y2
∴P2点的坐标为:(2+y2,y2),
∵点P2在反比例函数y=
1
x
(x>0)的图象上,
∴(2+y2)?y2=1,
解得:y2=-1+

2
或-1-

2
(不合题意舍去),
∴y1+y2=1+(-1+

2
)=

2

故答案为:

2

据专家权威分析,试题“如图,平面直角坐标系中,⊙O1过原点O,且⊙O1与⊙O2相外切,圆心O1..”主要考查你对  求反比例函数的解析式及反比例函数的应用  等考点的理解。关于这些考点的“档案”如下:

求反比例函数的解析式及反比例函数的应用

考点名称:求反比例函数的解析式及反比例函数的应用

  • 反比例函数解析式的确定方法:
    由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。

    反比例函数的应用:
    建立函数模型,解决实际问题。

  • 用待定系数法求反比例函数关系式的一般步骤是:
    ①设所求的反比例函数为:y= (k≠0);
    ②根据已知条件(自变量与函数的对应值)列出含k的方程;
    ③由代人法解待定系数k的值;
    ④把k值代人函数关系式y= 中。

    反比例函数应用一般步骤:
    ①审题;
    ②求出反比例函数的关系式;
    ③求出问题的答案,作答。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐