如图,正比例函数y=2x与反比例函数y=kx(k>0)的图象相交于A、C两点,过点A作AD垂直x轴,垂足为D,过点C作CB垂直x轴,垂足为B,连接AB和CD.已知点A的横坐标为2.(1)求k的值;(2-数学

题文

如图,正比例函数y=2x与反比例函数y=
k
x
(k>0)的图象相交于A、C两点,过点A作AD垂直x轴,垂足为D,过点C作CB垂直x轴,垂足为B,连接AB和CD.已知点A的横坐标为2.
(1)求k的值;
(2)求证:四边形ABCD是平行四边形;
(3)P、Q两点是坐标轴上的动点(P为正半轴上的点,Q为负半轴上的点),当以A、C、P、Q四点为顶点的四边形是矩形时,求P、Q两点的坐标.
题型:解答题  难度:中档

答案

(1)当x=2时,由y=2x得y=4,
∴k=8(4分)

(2)∵A、O、C在一条直线上,A,C在反比例函数和正比例函数的交点处,
∴点A和点C关于点O中心对称,
∴AO=OC,BO=OD,
∴四边形ABCD是平行四边形(或者解方程组y=2x和y=
8
x
,求得C点的坐标为(-2,-4)也可)(4分)

(3)∵以AC为边的四边形是矩形时,点P、Q分别在x轴和y轴上时,此时不可能;
∴只能以AC为矩形的对角线,此时P、Q分别在x轴的正、负半轴上或者在y轴的正、负半轴上.
而AO=

22+42
=2

5

∴以O为圆心,2

5
为半径画圆与坐标轴的交点即为所求的点.P(2

5
,0),Q(-2

5
,0)或者P(0,2

5
),Q(0,-2

5
).(4分)

据专家权威分析,试题“如图,正比例函数y=2x与反比例函数y=kx(k>0)的图象相交于A、C两点..”主要考查你对  求反比例函数的解析式及反比例函数的应用  等考点的理解。关于这些考点的“档案”如下:

求反比例函数的解析式及反比例函数的应用

考点名称:求反比例函数的解析式及反比例函数的应用

  • 反比例函数解析式的确定方法:
    由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。

    反比例函数的应用:
    建立函数模型,解决实际问题。

  • 用待定系数法求反比例函数关系式的一般步骤是:
    ①设所求的反比例函数为:y= (k≠0);
    ②根据已知条件(自变量与函数的对应值)列出含k的方程;
    ③由代人法解待定系数k的值;
    ④把k值代人函数关系式y= 中。

    反比例函数应用一般步骤:
    ①审题;
    ②求出反比例函数的关系式;
    ③求出问题的答案,作答。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐