如图,已知反比例函数y=kx的图象经过第二象限内的点A(-1,m),AB⊥x轴于点B,△AOB的面积为2.若直线y=ax+b经过点A,并且经过反比例函数y=kx的图象上另一点C(n,一2).(1)求直线-数学

题文

如图,已知反比例函数y=
k
x
的图象经过第二象限内的点A(-1,m),AB⊥x轴于点B,△AOB的面积为2.若直线y=ax+b经过点A,并且经过反比例函数y=
k
x
的图象上另一点C(n,一2).
(1)求直线y=ax+b的解析式;
(2)设直线y=ax+b与x轴交于点M,求AM的长;
(3)在双曲线上是否存在点P,使得△MBP的面积为8?若存在请求P点坐标;若不存在请说明理由.
题型:解答题  难度:中档

答案

(1)∵△AOB的面积为2,
|k|
2
=2,
又∵函数图象在二、四象限,
∴k<0,
∴k=-4,
故y=-
4
x

则点A的坐标为(-1,4),点C的坐标为(2,-2),
将点A(-1,4),点C(2,-2),代入y=ax+b可得

-a+b=4
2a+b=-2

解得:

a=-2
b=2

故直线y=ax+b的解析式为:y=-2x+2;
(2)令y=0,可得x=1,
则点M的坐标为(1,0),
在Rt△ABM中,AB=4,BM=2,
则AM=

AB2+BM2
=2

5

(3)存在.
设点P的纵坐标为y,
1
2
BM×|y|=8,
解得:y=±8,
故点P的坐标为(-
1
2
,8)或(
1
2
,-8).

据专家权威分析,试题“如图,已知反比例函数y=kx的图象经过第二象限内的点A(-1,m),AB..”主要考查你对  求反比例函数的解析式及反比例函数的应用  等考点的理解。关于这些考点的“档案”如下:

求反比例函数的解析式及反比例函数的应用

考点名称:求反比例函数的解析式及反比例函数的应用

  • 反比例函数解析式的确定方法:
    由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。

    反比例函数的应用:
    建立函数模型,解决实际问题。

  • 用待定系数法求反比例函数关系式的一般步骤是:
    ①设所求的反比例函数为:y= (k≠0);
    ②根据已知条件(自变量与函数的对应值)列出含k的方程;
    ③由代人法解待定系数k的值;
    ④把k值代人函数关系式y= 中。

    反比例函数应用一般步骤:
    ①审题;
    ②求出反比例函数的关系式;
    ③求出问题的答案,作答。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐