如图,矩形ABCD的对角线BD的中点经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数y=k2+2k+1x的图象上.若点A的坐标为(-4,-1),则k的值为______.-数学

题文

如图,矩形ABCD的对角线BD的中点经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数y=
k2+2k+1
x
的图象上.若点A的坐标为(-4,-1),则k的值为______.
题型:填空题  难度:偏易

答案

如图:
∵矩形ABCD的对角线BD的中点经过坐标原点,矩形的边分别平行于坐标轴,
∴AC与BD交于点O,
故A,C关于原点对称,
∵点A的坐标为(-4,-1),
∴C点坐标为:(4,1),
则k=4×1=4,
∴k2+2k+1=4,
(k+3)(k-1)=0,
解得,k=1或k=-3.
故答案为:-3,1.

据专家权威分析,试题“如图,矩形ABCD的对角线BD的中点经过坐标原点,矩形的边分别平行..”主要考查你对  求反比例函数的解析式及反比例函数的应用  等考点的理解。关于这些考点的“档案”如下:

求反比例函数的解析式及反比例函数的应用

考点名称:求反比例函数的解析式及反比例函数的应用

  • 反比例函数解析式的确定方法:
    由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。

    反比例函数的应用:
    建立函数模型,解决实际问题。

  • 用待定系数法求反比例函数关系式的一般步骤是:
    ①设所求的反比例函数为:y= (k≠0);
    ②根据已知条件(自变量与函数的对应值)列出含k的方程;
    ③由代人法解待定系数k的值;
    ④把k值代人函数关系式y= 中。

    反比例函数应用一般步骤:
    ①审题;
    ②求出反比例函数的关系式;
    ③求出问题的答案,作答。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐