如图,矩形ABCO(OA>OC)的两边分别在x轴的负半轴和y轴的正半轴上,点B在反比例函数y=-8x(x<0)的图象上,且OC=2.将矩形ABCO以C为旋转中心,逆时针转90°后得到矩形EFCD,反比例-数学

题文

如图,矩形ABCO(OA>OC)的两边分别在x轴的负半轴和y轴的正半轴上,点B在反比例函数y=-
8
x
(x<0)的图象上,且OC=2.将矩形ABCO以C为旋转中心,逆时针转90°后得到矩形EFCD,反比例函数y=
k
x
(x<0)的图象经过点E.
(1)求k的值;
(2)判断线段BE的中点M是否在反比例函数y=
k
x
(x<0)的图象上,请说明理由.
题型:解答题  难度:中档

答案

(1)∵点B在反比例函数y=-
8
x
(x<0)的图象上,且OC=2,
∴B(-2,4),
∴OA=4,
∵将矩形ABCO以C为旋转中心,逆时针转90°后得到矩形EFCD,
∴E(-6,2).
∵反比例函数y=
k
x
(x<0)的图象经过点E,
∴k=-6×2=-12;

(2)∵M点在反比例函数的图象上,B(-2,4),E(-6,2),
∴M(-4,3),
∵-4×3=-12,
∴线段BE的中点M在反比例函数y=-
12
x
(x<0)的图象上.

据专家权威分析,试题“如图,矩形ABCO(OA>OC)的两边分别在x轴的负半轴和y轴的正半轴上,..”主要考查你对  求反比例函数的解析式及反比例函数的应用  等考点的理解。关于这些考点的“档案”如下:

求反比例函数的解析式及反比例函数的应用

考点名称:求反比例函数的解析式及反比例函数的应用

  • 反比例函数解析式的确定方法:
    由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。

    反比例函数的应用:
    建立函数模型,解决实际问题。

  • 用待定系数法求反比例函数关系式的一般步骤是:
    ①设所求的反比例函数为:y= (k≠0);
    ②根据已知条件(自变量与函数的对应值)列出含k的方程;
    ③由代人法解待定系数k的值;
    ④把k值代人函数关系式y= 中。

    反比例函数应用一般步骤:
    ①审题;
    ②求出反比例函数的关系式;
    ③求出问题的答案,作答。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐