如图,帆船A和帆船B在太湖湖面上训练,O为湖面上的一个定点,教练船静候于点O,训练时要求A、B两船始终关于O点对称.以O为原点,建立如图所示的坐标系,x轴、y轴的正方向分别-数学
题文
如图,帆船A和帆船B在太湖湖面上训练,O为湖面上的一个定点,教练船静候于点O,训练时要求A、B两船始终关于O点对称.以O为原点,建立如图所示的坐标系,x轴、y轴的正方向分别表示正东、正北方向.设A、B两船可近似看成在双曲线y=
(1)发现C船时,A、B、C三船所在位置的坐标分别为A(______,______)、B(______,______)和C(______,______); (2)发现C船,三船立即停止训练,并分别从A、O、B三点出发沿最短路线同时前往救援,设A、B两船的速度相等,教练船与A船的速度之比为3:4,问教练船是否最先赶到?请说明理由. |
答案
(1)CE⊥x轴于E,解方程组
∴A(2,2),B(-2,-2), 在等边△ABC中可求OA=2
则OC=
在Rt△OCE中,OE=CE=OC?sin45°=2
∴C(2
(2)作AD⊥x轴于D,连AC、BC和OC, ∵A(2,2), ∴∠AOD=45°,AO=2
∵C在O的东南45°方向上, ∴∠AOC=45°+45°=90°, ∵AO=BO,∴AC=BC, 又∵∠BAC=60°, ∴△ABC为正三角形, ∴AC=BC=AB=2AO=4
∴OC=
由条件设教练船的速度为3m,A、B两船的速度都为4m, 则教练船所用时间为
∵
∴
∴教练船没有最先赶到. |
据专家权威分析,试题“如图,帆船A和帆船B在太湖湖面上训练,O为湖面上的一个定点,教练..”主要考查你对 求反比例函数的解析式及反比例函数的应用 等考点的理解。关于这些考点的“档案”如下:
求反比例函数的解析式及反比例函数的应用
考点名称:求反比例函数的解析式及反比例函数的应用
反比例函数解析式的确定方法:
由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。反比例函数的应用:
建立函数模型,解决实际问题。- 用待定系数法求反比例函数关系式的一般步骤是:
①设所求的反比例函数为:y= (k≠0);
②根据已知条件(自变量与函数的对应值)列出含k的方程;
③由代人法解待定系数k的值;
④把k值代人函数关系式y= 中。
反比例函数应用一般步骤:
①审题;
②求出反比例函数的关系式;
③求出问题的答案,作答。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:如图,在平面直角坐标系中,点O是坐标原点,正比例函数y=kx的图象与双曲线y=-2x交于点A,且点A的横坐标为-2.(1)求k的值.(2)将直线y=kx向上平移4个单位得到直线BC,直线BC分别-数学
下一篇:已知反比例函数y=kx的图象经过点A(-3,1).(1)试确定此反比例函数的解析式;(2)点O是坐标原点,将线段OA绕O点顺时针旋转30°得到线段OB.判断点B是否在此反比例函数的图象上,并-数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |