如图,第四象限的角平分线OM与反比例函数y=kx(k≠0)的图象交于点A,已知OA=32,则该函数的解析式为()A.y=3xB.y=-3xC.y=9xD.y=-9x-数学

题文

如图,第四象限的角平分线OM与反比例函数y=
k
x
(k≠0)的图象交于点A,已知OA=3

2
,则该函数的解析式为(  )
A.y=
3
x
B.y=-
3
x
C.y=
9
x
D.y=-
9
x

题型:单选题  难度:偏易

答案

如图,作AB⊥坐标轴.
因为OA是第四象限的角平分线,所以Rt△ABO是等腰直角三角形.
因为OA=3

2
,所以AB=OB=3,
所以A(3,-3).
再进一步代入y=
k
x
(k≠0),得k=-9.
故选D.

据专家权威分析,试题“如图,第四象限的角平分线OM与反比例函数y=kx(k≠0)的图象交于点A..”主要考查你对  求反比例函数的解析式及反比例函数的应用  等考点的理解。关于这些考点的“档案”如下:

求反比例函数的解析式及反比例函数的应用

考点名称:求反比例函数的解析式及反比例函数的应用

  • 反比例函数解析式的确定方法:
    由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。

    反比例函数的应用:
    建立函数模型,解决实际问题。

  • 用待定系数法求反比例函数关系式的一般步骤是:
    ①设所求的反比例函数为:y= (k≠0);
    ②根据已知条件(自变量与函数的对应值)列出含k的方程;
    ③由代人法解待定系数k的值;
    ④把k值代人函数关系式y= 中。

    反比例函数应用一般步骤:
    ①审题;
    ②求出反比例函数的关系式;
    ③求出问题的答案,作答。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐