如图1,点A在第一象限,AB⊥x轴于B点,连结OA,将Rt△AOB折叠,使A点与x轴上的动点A′重合,折痕交AB边于D点,交斜边OA于E点,(1)若A点的坐标为(8,6),当EA'∥AB时,点A'的坐-数学

题文

如图1,点A在第一象限,AB⊥x轴于B点,连结OA,将Rt△AOB折叠,使A点与x轴上的动点A′重合,折痕交AB边于D点,交斜边OA于E点,
(1)若A点的坐标为(8,6),当EA'∥AB时,点A'的坐标是______;
(2)若A'与原点O重合,OA=8,双曲线y=
k
x
(x>0)的图象恰好经过D、E两点(如图2),则k=______.
题型:填空题  难度:中档

答案

(1)∵AB⊥x轴,A点的坐标为(8,6),
∴OB=8,AB=6,
∴OA=

AB2+OB2
=10,
∵EA′∥AB,
∴EA′⊥x轴,
∴sin∠AOB=
A′E
OE
=
AB
OA
=
3
5

由折叠的性质可得:A′E=AE,
∴AE:OE=3:5,
∴A′E=AE=10×
3
8
=
15
4
,OE=
5
8
×10=
25
4

∴OA′=

OE2-A′E2
=5,
∴点A′的坐标是:(5,0);

(2)设点A的坐标为:(2a,2b),
∵A′与原点O重合,
∴点E的坐标为:(a,b),
∵双曲线y=
k
x
(x>0)的图象恰好经过D、E两点,
∴k=ab,
∴点D的坐标为:(2a,
1
2
b),
∴AB=2b,BD=
1
2
b,OB=2a,
由折叠的性质可得:OD=AD=AB-BD=
3
2
b,
在Rt△OBD中,OD2=OB2+BD2
即(
3
2
b)2=(2a)2+(
1
2
b)2①,
在Rt△OAB中,OA2=OB2+AB2
即82=(2a)2+(2b)2②,
联立①②得:a=
4

3
3
,b=
4

6
3

∴k=ab=
16

2
3

故答案为:(1)(5,0);(2)
16

2
3

据专家权威分析,试题“如图1,点A在第一象限,AB⊥x轴于B点,连结OA,将Rt△AOB折叠,使A..”主要考查你对  求反比例函数的解析式及反比例函数的应用  等考点的理解。关于这些考点的“档案”如下:

求反比例函数的解析式及反比例函数的应用

考点名称:求反比例函数的解析式及反比例函数的应用

  • 反比例函数解析式的确定方法:
    由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。

    反比例函数的应用:
    建立函数模型,解决实际问题。

  • 用待定系数法求反比例函数关系式的一般步骤是:
    ①设所求的反比例函数为:y= (k≠0);
    ②根据已知条件(自变量与函数的对应值)列出含k的方程;
    ③由代人法解待定系数k的值;
    ④把k值代人函数关系式y= 中。

    反比例函数应用一般步骤:
    ①审题;
    ②求出反比例函数的关系式;
    ③求出问题的答案,作答。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐